These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 32113226)

  • 1. Supervised chaotic source separation by a tank of water.
    Lu Z; Kim JZ; Bassett DS
    Chaos; 2020 Feb; 30(2):021101. PubMed ID: 32113226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate separation of mixed high-dimension optical-chaotic signals using optical reservoir computing based on optically pumped VCSELs.
    Zhong D; Hu Y; Zhao K; Deng W; Hou P; Zhang J
    Opt Express; 2022 Oct; 30(22):39561-39581. PubMed ID: 36298905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is there chaos in the brain? II. Experimental evidence and related models.
    Korn H; Faure P
    C R Biol; 2003 Sep; 326(9):787-840. PubMed ID: 14694754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Separation of chaotic signals by reservoir computing.
    Krishnagopal S; Girvan M; Ott E; Hunt BR
    Chaos; 2020 Feb; 30(2):023123. PubMed ID: 32113243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry].
    Pezard L; Nandrino JL
    Encephale; 2001; 27(3):260-8. PubMed ID: 11488256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of nonstationary chaotic systems.
    Serquina R; Lai YC; Chen Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):026208. PubMed ID: 18352104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring changes in time of chaotic nonlinear systems.
    Wright J
    Chaos; 1995 Jun; 5(2):356-366. PubMed ID: 12780189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling nonlinear dynamical systems into arbitrary states using machine learning.
    Haluszczynski A; Räth C
    Sci Rep; 2021 Jun; 11(1):12991. PubMed ID: 34155228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model selection of chaotic systems from data with hidden variables using sparse data assimilation.
    Ribera H; Shirman S; Nguyen AV; Mangan NM
    Chaos; 2022 Jun; 32(6):063101. PubMed ID: 35778121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Can the analytic techniques of nonlinear dynamics distinguish periodic, random and chaotic signals?
    Denton TA; Diamond GA
    Comput Biol Med; 1991; 21(4):243-63. PubMed ID: 1764933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interpretable predictions of chaotic dynamical systems using dynamical system deep learning.
    Wang M; Li J
    Sci Rep; 2024 Feb; 14(1):3143. PubMed ID: 38326451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resonance phenomena controlled by external feedback signals and additive noise in neural systems.
    Nobukawa S; Shibata N; Nishimura H; Doho H; Wagatsuma N; Yamanishi T
    Sci Rep; 2019 Sep; 9(1):12630. PubMed ID: 31477740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blind source separation of chaotic laser signals by independent component analysis.
    Kuraya M; Uchida A; Yoshimori S; Umeno K
    Opt Express; 2008 Jan; 16(2):725-30. PubMed ID: 18542148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finding nonlinear system equations and complex network structures from data: A sparse optimization approach.
    Lai YC
    Chaos; 2021 Aug; 31(8):082101. PubMed ID: 34470223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cuffless blood pressure estimation using chaotic features of photoplethysmograms and parallel convolutional neural network.
    Khodabakhshi MB; Eslamyeh N; Sadredini SZ; Ghamari M
    Comput Methods Programs Biomed; 2022 Nov; 226():107131. PubMed ID: 36137326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classification of hyperchaotic, chaotic, and regular signals using single nonlinear node delay-based reservoir computers.
    Wenkack Liedji D; Talla Mbé JH; Kenne G
    Chaos; 2022 Dec; 32(12):123126. PubMed ID: 36587364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model-free tracking control of complex dynamical trajectories with machine learning.
    Zhai ZM; Moradi M; Kong LW; Glaz B; Haile M; Lai YC
    Nat Commun; 2023 Sep; 14(1):5698. PubMed ID: 37709780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid forecasting of chaotic processes: Using machine learning in conjunction with a knowledge-based model.
    Pathak J; Wikner A; Fussell R; Chandra S; Hunt BR; Girvan M; Ott E
    Chaos; 2018 Apr; 28(4):041101. PubMed ID: 31906641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unsupervised separation of nonlinearly mixed event-related potentials using manifold clustering and non-negative matrix factorization.
    Zhang K; Hu X
    Comput Biol Med; 2024 Aug; 178():108700. PubMed ID: 38852400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.