These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 32113251)

  • 1. Mutual synchronization of two flame-driven thermoacoustic oscillators: Dissipative and time-delayed coupling effects.
    Moon K; Guan Y; Li LKB; Kim KT
    Chaos; 2020 Feb; 30(2):023110. PubMed ID: 32113251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-order modeling of the mutual synchronization between two turbulent thermoacoustic oscillators.
    Guan Y; Moon K; Kim KT; Li LKB
    Phys Rev E; 2021 Aug; 104(2-1):024216. PubMed ID: 34525572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chaos, synchronization, and desynchronization in a liquid-fueled diffusion-flame combustor with an intrinsic hydrodynamic mode.
    Guan Y; Li LKB; Ahn B; Kim KT
    Chaos; 2019 May; 29(5):053124. PubMed ID: 31154771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitigation of limit cycle oscillations in a turbulent thermoacoustic system via delayed acoustic self-feedback.
    Sahay A; Kushwaha A; Pawar SA; P R M; Dhadphale JM; Sujith RI
    Chaos; 2023 Apr; 33(4):. PubMed ID: 37097926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatiotemporal patterns corresponding to phase synchronization and generalized synchronization states of thermoacoustic instability.
    Pawar SA; Raghunath MP; K Valappil R; Krishnan A; Manoj K; Sujith RI
    Chaos; 2024 May; 34(5):. PubMed ID: 38717395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mean-field model of synchronization for open-loop, swirl controlled thermoacoustic system.
    Singh S; Kumar Dutta A; Dhadphale JM; Roy A; Sujith RI; Chaudhuri S
    Chaos; 2023 Apr; 33(4):. PubMed ID: 37097956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quenching and amplification of thermoacoustic oscillations in two nonidentical Rijke tubes interacting via time-delay and dissipative coupling.
    Doranehgard MH; Gupta V; Li LKB
    Phys Rev E; 2022 Jun; 105(6-1):064206. PubMed ID: 35854581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strange nonchaotic and chaotic attractors in a self-excited thermoacoustic oscillator subjected to external periodic forcing.
    Guan Y; Murugesan M; Li LKB
    Chaos; 2018 Sep; 28(9):093109. PubMed ID: 30278637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamical states and bifurcations in coupled thermoacoustic oscillators.
    Srikanth S; Pawar SA; Manoj K; Sujith RI
    Chaos; 2022 Jul; 32(7):073129. PubMed ID: 35907737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synchronous behaviour of two interacting oscillatory systems undergoing quasiperiodic route to chaos.
    Mondal S; Pawar SA; Sujith RI
    Chaos; 2017 Oct; 27(10):103119. PubMed ID: 29092455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating thermoacoustic instability mitigation dynamics with a Kuramoto model for flamelet oscillators.
    Dutta AK; Ramachandran G; Chaudhuri S
    Phys Rev E; 2019 Mar; 99(3-1):032215. PubMed ID: 30999463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupling-induced instability in a ring of thermoacoustic oscillators.
    Pedergnana T; Noiray N
    Proc Math Phys Eng Sci; 2022 Mar; 478(2259):20210851. PubMed ID: 35280328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of time-delay and dissipative coupling on amplitude death in coupled thermoacoustic oscillators.
    Thomas N; Mondal S; Pawar SA; Sujith RI
    Chaos; 2018 Mar; 28(3):033119. PubMed ID: 29604646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oscillation quenching and phase-flip bifurcation in coupled thermoacoustic systems.
    Dange S; Manoj K; Banerjee S; Pawar SA; Mondal S; Sujith RI
    Chaos; 2019 Sep; 29(9):093135. PubMed ID: 31575137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On-off intermittency in coupled chaotic thermoacoustic oscillations.
    Delage R; Takayama Y; Biwa T
    Chaos; 2017 Apr; 27(4):043111. PubMed ID: 28456176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preventing a global transition to thermoacoustic instability by targeting local dynamics.
    George NB; Raghunathan M; Unni VR; Sujith RI; Kurths J; Surovyatkina E
    Sci Rep; 2022 Jun; 12(1):9305. PubMed ID: 35661119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupled interaction between unsteady flame dynamics and acoustic field in a turbulent combustor.
    Godavarthi V; Pawar SA; Unni VR; Sujith RI; Marwan N; Kurths J
    Chaos; 2018 Nov; 28(11):113111. PubMed ID: 30501211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attenuation behavior of thermoacoustic combustion instability analyzed by a complex-network- and synchronization-based approach.
    Murayama S; Gotoda H
    Phys Rev E; 2019 May; 99(5-1):052222. PubMed ID: 31212465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time Series and Spectral Analysis of Thermoacoustic Oscillations for Propane-Oxyfuel Combustion in a Swirl-Stabilized, Nonpremixed Combustor.
    Talal Q; Abubakar Z; Shakeel MR; AlSwat MS; Mokheimer EMA
    ACS Omega; 2023 Oct; 8(39):36053-36064. PubMed ID: 37810688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitigating self-excited flame pulsating and thermoacoustic oscillations using perforated liners.
    Zhao D; Gutmark E; Reinecke A
    Sci Bull (Beijing); 2019 Jul; 64(13):941-952. PubMed ID: 36659759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.