These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 32113301)

  • 1. Hybrid aeroacoustic approach for the efficient numerical simulation of human phonation.
    Schoder S; Weitz M; Maurerlehner P; Hauser A; Falk S; Kniesburges S; Döllinger M; Kaltenbacher M
    J Acoust Soc Am; 2020 Feb; 147(2):1179. PubMed ID: 32113301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anisotropic minimum dissipation subgrid-scale model in hybrid aeroacoustic simulations of human phonation.
    Lasota M; Šidlof P; Maurerlehner P; Kaltenbacher M; Schoder S
    J Acoust Soc Am; 2023 Feb; 153(2):1052. PubMed ID: 36859151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A hybrid approach to the computational aeroacoustics of human voice production.
    Šidlof P; Zörner S; Hüppe A
    Biomech Model Mechanobiol; 2015 Jun; 14(3):473-88. PubMed ID: 25288479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Error detection and filtering of incompressible flow simulations for aeroacoustic predictions of human voice.
    Schoder S; Kraxberger F; Falk S; Wurzinger A; Roppert K; Kniesburges S; Döllinger M; Kaltenbacher M
    J Acoust Soc Am; 2022 Sep; 152(3):1425. PubMed ID: 36182323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aeroacoustic source term computation based on radial basis functions.
    Schoder S; Roppert K; Weitz M; Junger C; Kaltenbacher M
    Int J Numer Methods Eng; 2020 May; 121(9):2051-2067. PubMed ID: 32362687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational aeroacoustics of phonation, part I: Computational methods and sound generation mechanisms.
    Zhao W; Zhang C; Frankel SH; Mongeau L
    J Acoust Soc Am; 2002 Nov; 112(5 Pt 1):2134-46. PubMed ID: 12430825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multilevel nonuniform grid algorithm for acceleration of integral equation-based solvers for acoustic scattering.
    Brick Y; Boag A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jan; 57(1):262-73. PubMed ID: 20040452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical simulation of self-sustained oscillation of a voice-producing element based on Navier-Stokes equations and the finite element method.
    de Vries MP; Hamburg MC; Schutte HK; Verkerke GJ; Veldman AE
    J Acoust Soc Am; 2003 Apr; 113(4 Pt 1):2077-83. PubMed ID: 12703718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An iterative algorithm for computing aeroacoustic integrals with application to the analysis of free shear flow noise.
    Margnat F; Fortuné V
    J Acoust Soc Am; 2010 Oct; 128(4):1656-67. PubMed ID: 20968338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An aeroacoustic approach to phonation.
    McGowan RS
    J Acoust Soc Am; 1988 Feb; 83(2):696-704. PubMed ID: 3351128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite element generation of sibilants /s/ and /z/ using random distributions of Kirchhoff vortices.
    Pont A; Guasch O; Arnela M
    Int J Numer Method Biomed Eng; 2020 Feb; 36(2):e3302. PubMed ID: 31883313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational Models of Laryngeal Aerodynamics: Potentials and Numerical Costs.
    Sadeghi H; Kniesburges S; Kaltenbacher M; Schützenberger A; Döllinger M
    J Voice; 2019 Jul; 33(4):385-400. PubMed ID: 29428274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Effect of Vocal Fold Inferior Surface Hypertrophy on Voice Function in Excised Canine Larynges.
    Wang R; Bao H; Xu X; Piotrowski D; Zhang Y; Zhuang P
    J Voice; 2018 Jul; 32(4):396-402. PubMed ID: 28826980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A computational flow-induced noise and time-reversal technique for analysing aeroacoustic sources.
    Croaker P; Mimani A; Doolan C; Kessissoglou N
    J Acoust Soc Am; 2018 Apr; 143(4):2301. PubMed ID: 29716259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An immersed-boundary method for flow-structure interaction in biological systems with application to phonation.
    Luo H; Mittal R; Zheng X; Bielamowicz SA; Walsh RJ; Hahn JK
    J Comput Phys; 2008 Nov; 227(22):9303-9332. PubMed ID: 19936017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A modal-based reduction method for sound absorbing porous materials in poro-acoustic finite element models.
    Rumpler R; Deü JF; Göransson P
    J Acoust Soc Am; 2012 Nov; 132(5):3162-79. PubMed ID: 23145601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite element computation of elliptical vocal tract impedances using the two-microphone transfer function method.
    Arnela M; Guasch O
    J Acoust Soc Am; 2013 Jun; 133(6):4197-209. PubMed ID: 23742371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A theoretical study of the effects of various laryngeal configurations on the acoustics of phonation.
    Titze IR; Talkin DT
    J Acoust Soc Am; 1979 Jul; 66(1):60-74. PubMed ID: 489833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational aeroacoustics of phonation, part II: Effects of flow parameters and ventricular folds.
    Zhang C; Zhao W; Frankel SH; Mongeau L
    J Acoust Soc Am; 2002 Nov; 112(5 Pt 1):2147-54. PubMed ID: 12430826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aeroacoustic source characterization in a physical model of phonation.
    McPhail MJ; Campo ET; Krane MH
    J Acoust Soc Am; 2019 Aug; 146(2):1230. PubMed ID: 31472595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.