These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 32113379)
1. Measurement of the energy distribution of electrons escaping confinement from an electron cyclotron resonance ion source. Isherwood B; Machicoane G Rev Sci Instrum; 2020 Feb; 91(2):025104. PubMed ID: 32113379 [TBL] [Abstract][Full Text] [Related]
2. Measurements of the energy distribution of electrons lost from the minimum B-field-The effect of instabilities and two-frequency heating. Izotov I; Tarvainen O; Skalyga V; Mansfeld D; Koivisto H; Kronholm R; Toivanen V; Mironov V Rev Sci Instrum; 2020 Jan; 91(1):013502. PubMed ID: 32012519 [TBL] [Abstract][Full Text] [Related]
3. Lost electron energy distribution of electron cyclotron resonance ion sources. Izotov I; Skalyga V; Tarvainen O Rev Sci Instrum; 2022 Apr; 93(4):043501. PubMed ID: 35489927 [TBL] [Abstract][Full Text] [Related]
4. Limitations of electron cyclotron resonance ion source performances set by kinetic plasma instabilities. Tarvainen O; Laulainen J; Komppula J; Kronholm R; Kalvas T; Koivisto H; Izotov I; Mansfeld D; Skalyga V Rev Sci Instrum; 2015 Feb; 86(2):023301. PubMed ID: 25725830 [TBL] [Abstract][Full Text] [Related]
6. Influence of the electron cyclotron resonance plasma confinement on reducing the bremsstrahlung production of an electron cyclotron resonance ion source with metal-dielectric structures. Schachter L; Stiebing KE; Dobrescu S Rev Sci Instrum; 2009 Jan; 80(1):013303. PubMed ID: 19191430 [TBL] [Abstract][Full Text] [Related]
7. Influence of electron cyclotron resonance ion source parameters on high energy electrons. Li JB; Li LX; Li LB; Guo JW; Hitz D; Lu W; Feng YC; Zhang WH; Zhang XZ; Zhao HY; Sun LT; Zhao HW Rev Sci Instrum; 2020 Aug; 91(8):083302. PubMed ID: 32872961 [TBL] [Abstract][Full Text] [Related]
8. The influence of ambipolarity on plasma confinement and on the performance of electron cyclotron resonance ion sources. Schachter L; Dobrescu S; Stiebing KE; Thuillier T; Lamy T Rev Sci Instrum; 2008 Feb; 79(2 Pt 2):02A329. PubMed ID: 18315119 [TBL] [Abstract][Full Text] [Related]
9. Enhanced confinement in electron cyclotron resonance ion source plasma. Schachter L; Stiebing KE; Dobrescu S Rev Sci Instrum; 2010 Feb; 81(2):02A330. PubMed ID: 20192351 [TBL] [Abstract][Full Text] [Related]
10. Electronic temperatures, densities, and plasma x-ray emission of a 14.5 GHz electron-cyclotron resonance ion source. Gumberidze A; Trassinelli M; Adrouche N; Szabo CI; Indelicato P; Haranger F; Isac JM; Lamour E; Le Bigot EO; Mérot J; Prigent C; Rozet JP; Vernhet D Rev Sci Instrum; 2010 Mar; 81(3):033303. PubMed ID: 20370166 [TBL] [Abstract][Full Text] [Related]
11. The preliminary tests of the superconducting electron cyclotron resonance ion source DECRIS-SC2. Efremov A; Bekhterev V; Bogomolov S; Drobin V; Loginov V; Lebedev A; Yazvitsky N; Yakovlev B Rev Sci Instrum; 2012 Feb; 83(2):02A334. PubMed ID: 22380181 [TBL] [Abstract][Full Text] [Related]
12. Measurements and analysis of bremsstrahlung x-ray spectrum obtained in NANOGAN electron cyclotron resonance ion source. Baskaran R; Selvakumaran TS; Rodrigues G; Kanjilal D; Roy A Rev Sci Instrum; 2008 Feb; 79(2 Pt 2):02A324. PubMed ID: 18315114 [TBL] [Abstract][Full Text] [Related]
13. Intense beam production of highly charged heavy ions by the superconducting electron cyclotron resonance ion source SECRAL. Zhao HW; Sun LT; Zhang XZ; Guo XH; Cao Y; Lu W; Zhang ZM; Yuan P; Song MT; Zhao HY; Jin T; Shang Y; Zhan WL; Wei BW; Xie DZ Rev Sci Instrum; 2008 Feb; 79(2 Pt 2):02A315. PubMed ID: 18315105 [TBL] [Abstract][Full Text] [Related]
14. The effect of cavity tuning on oxygen beam currents of an A-ECR type 14 GHz electron cyclotron resonance ion source. Tarvainen O; Orpana J; Kronholm R; Kalvas T; Laulainen J; Koivisto H; Izotov I; Skalyga V; Toivanen V Rev Sci Instrum; 2016 Sep; 87(9):093301. PubMed ID: 27782615 [TBL] [Abstract][Full Text] [Related]
15. New progress of high current gasdynamic ion source (invited). Skalyga V; Izotov I; Golubev S; Sidorov A; Razin S; Vodopyanov A; Tarvainen O; Koivisto H; Kalvas T Rev Sci Instrum; 2016 Feb; 87(2):02A716. PubMed ID: 26931934 [TBL] [Abstract][Full Text] [Related]
17. Metal-dielectric structures for high power electron cyclotron resonance ion source. Stiebing KE; Schachter L; Dobrescu S Rev Sci Instrum; 2010 Feb; 81(2):02A326. PubMed ID: 20192347 [TBL] [Abstract][Full Text] [Related]
18. The electron cyclotron resonance ion source with arc-shaped coils concept (invited). Koivisto H; Suominen P; Tarvainen O; Spädtke P Rev Sci Instrum; 2012 Feb; 83(2):02A312. PubMed ID: 22380159 [TBL] [Abstract][Full Text] [Related]
19. A new 18 GHz room temperature electron cyclotron resonance ion source for highly charged ion beams. Koivisto H; Ikonen A; Kalvas T; Kosonen S; Kronholm R; Marttinen M; Tarvainen O; Toivanen V Rev Sci Instrum; 2020 Feb; 91(2):023303. PubMed ID: 32113443 [TBL] [Abstract][Full Text] [Related]
20. Towards a better comprehension of plasma formation and heating in high performances electron cyclotron resonance ion sources (invited). Mascali D; Gammino S; Celona L; Ciavola G Rev Sci Instrum; 2012 Feb; 83(2):02A336. PubMed ID: 22380183 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]