These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 32113548)

  • 1. Macro-classification of meteorites by portable energy dispersive X-ray fluorescence spectroscopy (pED-XRF), principal component analysis (PCA) and machine learning algorithms.
    Allegretta I; Marangoni B; Manzari P; Porfido C; Terzano R; De Pascale O; Senesi GS
    Talanta; 2020 May; 212():120785. PubMed ID: 32113548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid and non-invasive screening of high renin hypertension using Raman spectroscopy and different classification algorithms.
    Zheng X; Lv G; Zhang Y; Lv X; Gao Z; Tang J; Mo J
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 May; 215():244-248. PubMed ID: 30831394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designing a robust feature extraction method based on optimum allocation and principal component analysis for epileptic EEG signal classification.
    Siuly S; Li Y
    Comput Methods Programs Biomed; 2015 Apr; 119(1):29-42. PubMed ID: 25704869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Usefulness of a Dual Macro- and Micro-Energy-Dispersive X-Ray Fluorescence Spectrometer to Develop Quantitative Methodologies for Historic Mortar and Related Materials Characterization.
    García-Florentino C; Maguregui M; Romera-Fernández M; Queralt I; Margui E; Madariaga JM
    Anal Chem; 2018 May; 90(9):5795-5802. PubMed ID: 29641899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of trace arsenic in soils by field-portable X-ray fluorescence spectrometry: considerations for sample preparation and measurement conditions.
    Parsons C; Margui Grabulosa E; Pili E; Floor GH; Roman-Ross G; Charlet L
    J Hazard Mater; 2013 Nov; 262():1213-22. PubMed ID: 22819961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-destructive characterisation of the Elephant Moraine 83227 meteorite using confocal Raman, micro-energy-dispersive X-ray fluorescence and Raman-scanning electron microscope-energy-dispersive X-ray microscopies.
    Torre-Fdez I; Aramendia J; Gomez-Nubla L; Castro K; Maguregui M; Fdez-Ortiz de Vallejuelo S; Arana G; Madariaga JM
    Anal Bioanal Chem; 2018 Nov; 410(28):7477-7488. PubMed ID: 30218122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Portable X-ray fluorescence of zinc applied to human toenail clippings.
    Fleming DEB; Crook SL; Evans CT; Nader MN; Atia M; Hicks JMT; Sweeney E; McFarlane CR; Kim JS; Keltie E; Adisesh A
    J Trace Elem Med Biol; 2020 Dec; 62():126603. PubMed ID: 32623095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Portable XRF and principal component analysis for bill characterization in forensic science.
    Appoloni CR; Melquiades FL
    Appl Radiat Isot; 2014 Feb; 85():92-5. PubMed ID: 24393811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of a field portable X-Ray fluorescence analyzer to determine the concentration of lead and other metals in soil samples.
    Clark S; Menrath W; Chen M; Roda S; Succop P
    Ann Agric Environ Med; 1999; 6(1):27-32. PubMed ID: 10384212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Handheld X-ray Fluorescence (XRF) Versus Wavelength Dispersive XRF: Characterization of Chinese Blue-and-White Porcelain Sherds Using Handheld and Laboratory-Type XRF Instruments.
    Simsek Franci G
    Appl Spectrosc; 2020 Mar; 74(3):314-322. PubMed ID: 31724430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of a portable X-ray fluorescence instrument for the determination of lead in workplace air samples.
    Morley JC; Clark CS; Deddens JA; Ashley K; Roda S
    Appl Occup Environ Hyg; 1999 May; 14(5):306-16. PubMed ID: 10446483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A nondestructive approach for discrimination of the origin of sesame seeds using ED-XRF and NIR spectrometry with chemometrics.
    Choi YH; Hong CK; Park GY; Kim CK; Kim JH; Jung K; Kwon JH
    Food Sci Biotechnol; 2016; 25(2):433-438. PubMed ID: 30263287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined non-destructive XRF and SR-XAS study of archaeological artefacts.
    Bardelli F; Barone G; Crupi V; Longo F; Majolino D; Mazzoleni P; Venuti V
    Anal Bioanal Chem; 2011 Mar; 399(9):3147-53. PubMed ID: 21311873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soybean seed vigor discrimination by using infrared spectroscopy and machine learning algorithms.
    Larios G; Nicolodelli G; Ribeiro M; Canassa T; Reis AR; Oliveira SL; Alves CZ; Marangoni BS; Cena C
    Anal Methods; 2020 Sep; 12(35):4303-4309. PubMed ID: 32857095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combination of in situ spectroscopy and chemometric techniques to discriminate different types of Roman bricks and the influence of microclimate environment.
    Scatigno C; Prieto-Taboada N; García-Florentino C; Fdez-Ortiz de Vallejuelo S; Maguregui M; Madariaga JM
    Environ Sci Pollut Res Int; 2018 Mar; 25(7):6285-6299. PubMed ID: 29247413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid Identification of Marine Plastic Debris via Spectroscopic Techniques and Machine Learning Classifiers.
    Michel APM; Morrison AE; Preston VL; Marx CT; Colson BC; White HK
    Environ Sci Technol; 2020 Sep; 54(17):10630-10637. PubMed ID: 32697577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. X-Ray Fluorescence Analysis and Self-Organizing Maps Classification of the Etruscan Gold Coin Collection at the Monetiere of Florence.
    Arias C; Bani S; Catalli F; Lorenzetti G; Grifoni E; Legnaioli S; Pagnotta S; Palleschi V
    Appl Spectrosc; 2017 May; 71(5):817-822. PubMed ID: 27154737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Identification of varieties of black bean using ground based hyperspectral imaging].
    Zhang C; Liu F; Zhang HL; Kong WW; He Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Mar; 34(3):746-50. PubMed ID: 25208405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The analysis of glass from portable electronic devices and glass accessories using µ-XRF for forensic investigations.
    Ovide O; Corzo R; Trejos T
    Forensic Sci Int; 2023 Feb; 343():111550. PubMed ID: 36623406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inorganic analysis of falsified medical products using X-ray fluorescence spectroscopy and chemometrics.
    Rebiere H; Kermaïdic A; Ghyselinck C; Brenier C
    Talanta; 2019 Apr; 195():490-496. PubMed ID: 30625574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.