BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 32113984)

  • 1. Nuclear accumulation of MKL1 in luminal breast cancer cells impairs genomic activity of ERα and is associated with endocrine resistance.
    Jehanno C; Fernandez-Calero T; Habauzit D; Avner S; Percevault F; Jullion E; Le Goff P; Coissieux MM; Muenst S; Marin M; Michel D; Métivier R; Flouriot G
    Biochim Biophys Acta Gene Regul Mech; 2020 May; 1863(5):194507. PubMed ID: 32113984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nuclear translocation of MRTFA in MCF7 breast cancer cells shifts ERα nuclear/genomic to extra-nuclear/non genomic actions.
    Jehanno C; Percevault F; Boujrad N; Le Goff P; Fontaine C; Arnal JF; Primig M; Pakdel F; Michel D; Métivier R; Flouriot G
    Mol Cell Endocrinol; 2021 Jun; 530():111282. PubMed ID: 33894309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of the MKL1/actin signaling pathway induces hormonal escape in estrogen-responsive breast cancer cell lines.
    Kerdivel G; Boudot A; Habauzit D; Percevault F; Demay F; Pakdel F; Flouriot G
    Mol Cell Endocrinol; 2014 Jun; 390(1-2):34-44. PubMed ID: 24721635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NR2F2 Orphan Nuclear Receptor is Involved in Estrogen Receptor Alpha-Mediated Transcriptional Regulation in Luminal A Breast Cancer Cells.
    Erdős E; Bálint BL
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32168782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repression of the estrogen receptor-alpha transcriptional activity by the Rho/megakaryoblastic leukemia 1 signaling pathway.
    Huet G; Mérot Y; Percevault F; Tiffoche C; Arnal JF; Boujrad N; Pakdel F; Métivier R; Flouriot G
    J Biol Chem; 2009 Dec; 284(49):33729-39. PubMed ID: 19826002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amplification of WHSC1L1 regulates expression and estrogen-independent activation of ERα in SUM-44 breast cancer cells and is associated with ERα over-expression in breast cancer.
    Irish JC; Mills JN; Turner-Ivey B; Wilson RC; Guest ST; Rutkovsky A; Dombkowski A; Kappler CS; Hardiman G; Ethier SP
    Mol Oncol; 2016 Jun; 10(6):850-65. PubMed ID: 27005559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. KMT2C mediates the estrogen dependence of breast cancer through regulation of ERα enhancer function.
    Gala K; Li Q; Sinha A; Razavi P; Dorso M; Sanchez-Vega F; Chung YR; Hendrickson R; Hsieh JJ; Berger M; Schultz N; Pastore A; Abdel-Wahab O; Chandarlapaty S
    Oncogene; 2018 Aug; 37(34):4692-4710. PubMed ID: 29755131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A functional interplay between ZNF217 and estrogen receptor alpha exists in luminal breast cancers.
    Nguyen NT; Vendrell JA; Poulard C; Győrffy B; Goddard-Léon S; Bièche I; Corbo L; Le Romancer M; Bachelot T; Treilleux I; Cohen PA
    Mol Oncol; 2014 Dec; 8(8):1441-57. PubMed ID: 24973012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endocrine therapy resistance can be associated with high estrogen receptor alpha (ERalpha) expression and reduced ERalpha phosphorylation in breast cancer models.
    Kuske B; Naughton C; Moore K; Macleod KG; Miller WR; Clarke R; Langdon SP; Cameron DA
    Endocr Relat Cancer; 2006 Dec; 13(4):1121-33. PubMed ID: 17158758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dependence receptor UNC5A restricts luminal to basal breast cancer plasticity and metastasis.
    Padua MB; Bhat-Nakshatri P; Anjanappa M; Prasad MS; Hao Y; Rao X; Liu S; Wan J; Liu Y; McElyea K; Jacobsen M; Sandusky G; Althouse S; Perkins S; Nakshatri H
    Breast Cancer Res; 2018 May; 20(1):35. PubMed ID: 29720215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional genomics identifies a mechanism for estrogen activation of the retinoic acid receptor alpha1 gene in breast cancer cells.
    Laganière J; Deblois G; Giguère V
    Mol Endocrinol; 2005 Jun; 19(6):1584-92. PubMed ID: 15831516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a hormone-regulated dynamic nuclear actin network associated with estrogen receptor alpha in human breast cancer cell nuclei.
    Ambrosino C; Tarallo R; Bamundo A; Cuomo D; Franci G; Nassa G; Paris O; Ravo M; Giovane A; Zambrano N; Lepikhova T; Jänne OA; Baumann M; Nyman TA; Cicatiello L; Weisz A
    Mol Cell Proteomics; 2010 Jun; 9(6):1352-67. PubMed ID: 20308691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Notch3 Maintains Luminal Phenotype and Suppresses Tumorigenesis and Metastasis of Breast Cancer via Trans-Activating Estrogen Receptor-α.
    Dou XW; Liang YK; Lin HY; Wei XL; Zhang YQ; Bai JW; Chen CF; Chen M; Du CW; Li YC; Tian J; Man K; Zhang GJ
    Theranostics; 2017; 7(16):4041-4056. PubMed ID: 29109797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AKT3 regulates ErbB2, ErbB3 and estrogen receptor α expression and contributes to endocrine therapy resistance of ErbB2(+) breast tumor cells from Balb-neuT mice.
    Grabinski N; Möllmann K; Milde-Langosch K; Müller V; Schumacher U; Brandt B; Pantel K; Jücker M
    Cell Signal; 2014 May; 26(5):1021-9. PubMed ID: 24463007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PSMD14 stabilizes estrogen signaling and facilitates breast cancer progression via deubiquitinating ERα.
    Yang P; Yang X; Wang D; Yang H; Li Z; Zhang C; Zhang S; Zhu J; Li X; Su P; Zhuang T
    Oncogene; 2024 Jan; 43(4):248-264. PubMed ID: 38017133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Association of FGFR1 with ERα Maintains Ligand-Independent ER Transcription and Mediates Resistance to Estrogen Deprivation in ER
    Formisano L; Stauffer KM; Young CD; Bhola NE; Guerrero-Zotano AL; Jansen VM; Estrada MM; Hutchinson KE; Giltnane JM; Schwarz LJ; Lu Y; Balko JM; Deas O; Cairo S; Judde JG; Mayer IA; Sanders M; Dugger TC; Bianco R; Stricker T; Arteaga CL
    Clin Cancer Res; 2017 Oct; 23(20):6138-6150. PubMed ID: 28751448
    [No Abstract]   [Full Text] [Related]  

  • 17. Research resource: interplay between the genomic and transcriptional networks of androgen receptor and estrogen receptor α in luminal breast cancer cells.
    Need EF; Selth LA; Harris TJ; Birrell SN; Tilley WD; Buchanan G
    Mol Endocrinol; 2012 Nov; 26(11):1941-52. PubMed ID: 23023562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth factor stimulation induces a distinct ER(alpha) cistrome underlying breast cancer endocrine resistance.
    Lupien M; Meyer CA; Bailey ST; Eeckhoute J; Cook J; Westerling T; Zhang X; Carroll JS; Rhodes DR; Liu XS; Brown M
    Genes Dev; 2010 Oct; 24(19):2219-27. PubMed ID: 20889718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Moving Toward Integrating Gene Expression Profiling Into High-Throughput Testing: A Gene Expression Biomarker Accurately Predicts Estrogen Receptor α Modulation in a Microarray Compendium.
    Ryan N; Chorley B; Tice RR; Judson R; Corton JC
    Toxicol Sci; 2016 May; 151(1):88-103. PubMed ID: 26865669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-regulated gene expression by oestrogen receptor α and liver receptor homolog-1 is a feature of the oestrogen response in breast cancer cells.
    Lai CF; Flach KD; Alexi X; Fox SP; Ottaviani S; Thiruchelvam PT; Kyle FJ; Thomas RS; Launchbury R; Hua H; Callaghan HB; Carroll JS; Charles Coombes R; Zwart W; Buluwela L; Ali S
    Nucleic Acids Res; 2013 Dec; 41(22):10228-40. PubMed ID: 24049078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.