These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 32114154)
1. A platform for context-specific genetic engineering of recombinant protein production by CHO cells. Cartwright JF; Arnall CL; Patel YD; Barber NOW; Lovelady CS; Rosignoli G; Harris CL; Dunn S; Field RP; Dean G; Daramola O; Gibson SJ; Peden AA; Brown AJ; Hatton D; James DC J Biotechnol; 2020 Mar; 312():11-22. PubMed ID: 32114154 [TBL] [Abstract][Full Text] [Related]
2. Model-directed engineering of "difficult-to-express" monoclonal antibody production by Chinese hamster ovary cells. Pybus LP; Dean G; West NR; Smith A; Daramola O; Field R; Wilkinson SJ; James DC Biotechnol Bioeng; 2014 Feb; 111(2):372-85. PubMed ID: 24081924 [TBL] [Abstract][Full Text] [Related]
3. A high cell density transient transfection system for therapeutic protein expression based on a CHO GS-knockout cell line: process development and product quality assessment. Rajendra Y; Hougland MD; Alam R; Morehead TA; Barnard GC Biotechnol Bioeng; 2015 May; 112(5):977-86. PubMed ID: 25502369 [TBL] [Abstract][Full Text] [Related]
4. Auditioning of CHO host cell lines using the artificial chromosome expression (ACE) technology. Kennard ML; Goosney DL; Monteith D; Roe S; Fischer D; Mott J Biotechnol Bioeng; 2009 Oct; 104(3):526-39. PubMed ID: 19544304 [TBL] [Abstract][Full Text] [Related]
5. miRNA engineering of CHO cells facilitates production of difficult-to-express proteins and increases success in cell line development. Fischer S; Marquart KF; Pieper LA; Fieder J; Gamer M; Gorr I; Schulz P; Bradl H Biotechnol Bioeng; 2017 Jul; 114(7):1495-1510. PubMed ID: 28262952 [TBL] [Abstract][Full Text] [Related]
6. A high-yielding CHO transient system: coexpression of genes encoding EBNA-1 and GS enhances transient protein expression. Daramola O; Stevenson J; Dean G; Hatton D; Pettman G; Holmes W; Field R Biotechnol Prog; 2014; 30(1):132-41. PubMed ID: 24106171 [TBL] [Abstract][Full Text] [Related]
7. Stable microRNA expression enhances therapeutic antibody productivity of Chinese hamster ovary cells. Strotbek M; Florin L; Koenitzer J; Tolstrup A; Kaufmann H; Hausser A; Olayioye MA Metab Eng; 2013 Nov; 20():157-66. PubMed ID: 24144501 [TBL] [Abstract][Full Text] [Related]
8. A mechanistic understanding of production instability in CHO cell lines expressing recombinant monoclonal antibodies. Kim M; O'Callaghan PM; Droms KA; James DC Biotechnol Bioeng; 2011 Oct; 108(10):2434-46. PubMed ID: 21538334 [TBL] [Abstract][Full Text] [Related]
9. Predicting the expression of recombinant monoclonal antibodies in Chinese hamster ovary cells based on sequence features of the CDR3 domain. Pybus LP; James DC; Dean G; Slidel T; Hardman C; Smith A; Daramola O; Field R Biotechnol Prog; 2014; 30(1):188-97. PubMed ID: 24311306 [TBL] [Abstract][Full Text] [Related]
10. CHO cells in biotechnology for production of recombinant proteins: current state and further potential. Kim JY; Kim YG; Lee GM Appl Microbiol Biotechnol; 2012 Feb; 93(3):917-30. PubMed ID: 22159888 [TBL] [Abstract][Full Text] [Related]
11. Tethered-variable CL bispecific IgG: an antibody platform for rapid bispecific antibody screening. Kim HS; Dunshee DR; Yee A; Tong RK; Kim I; Farahi F; Hongo JA; Ernst JA; Sonoda J; Spiess C Protein Eng Des Sel; 2017 Sep; 30(9):627-637. PubMed ID: 28985411 [TBL] [Abstract][Full Text] [Related]
12. A comparative study of different vector designs for the mammalian expression of recombinant IgG antibodies. Li J; Menzel C; Meier D; Zhang C; Dübel S; Jostock T J Immunol Methods; 2007 Jan; 318(1-2):113-24. PubMed ID: 17161420 [TBL] [Abstract][Full Text] [Related]
13. Reducing recombinant protein expression during CHO pool selection enhances frequency of high-producing cells. Poulain A; Mullick A; Massie B; Durocher Y J Biotechnol; 2019 Apr; 296():32-41. PubMed ID: 30885656 [TBL] [Abstract][Full Text] [Related]
14. Biological insights into the expression of translation initiation factors from recombinant CHOK1SV cell lines and their relationship to enhanced productivity. Mead EJ; Masterton RJ; Feary M; Obrezanova O; Zhang L; Young R; Smales CM Biochem J; 2015 Dec; 472(3):261-73. PubMed ID: 26420881 [TBL] [Abstract][Full Text] [Related]
15. CHO cell engineering to prevent polypeptide aggregation and improve therapeutic protein secretion. Le Fourn V; Girod PA; Buceta M; Regamey A; Mermod N Metab Eng; 2014 Jan; 21():91-102. PubMed ID: 23380542 [TBL] [Abstract][Full Text] [Related]
16. RNASeq highlights ATF6 pathway regulators for CHO cell engineering with different impacts of ATF6β and WFS1 knockdown on fed-batch production of IgG Rives D; Peak C; Blenner MA Sci Rep; 2024 Jun; 14(1):14141. PubMed ID: 38898154 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of a combinatorial cell engineering approach to overcome apoptotic effects in XBP-1(s) expressing cells. Becker E; Florin L; Pfizenmaier K; Kaufmann H J Biotechnol; 2010 Apr; 146(4):198-206. PubMed ID: 19958799 [TBL] [Abstract][Full Text] [Related]
18. The generation of stable, high MAb expressing CHO cell lines based on the artificial chromosome expression (ACE) technology. Kennard ML; Goosney DL; Monteith D; Zhang L; Moffat M; Fischer D; Mott J Biotechnol Bioeng; 2009 Oct; 104(3):540-53. PubMed ID: 19557833 [TBL] [Abstract][Full Text] [Related]
19. Recent advances in CHO cell line development for recombinant protein production. Tihanyi B; Nyitray L Drug Discov Today Technol; 2020 Dec; 38():25-34. PubMed ID: 34895638 [TBL] [Abstract][Full Text] [Related]
20. Precision control of recombinant gene transcription for CHO cell synthetic biology. Brown AJ; James DC Biotechnol Adv; 2016; 34(5):492-503. PubMed ID: 26721629 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]