BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 32114285)

  • 1. Computational prediction of protein ubiquitination sites mapping on Arabidopsis thaliana.
    Mosharaf MP; Hassan MM; Ahmed FF; Khatun MS; Moni MA; Mollah MNH
    Comput Biol Chem; 2020 Apr; 85():107238. PubMed ID: 32114285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. UbNiRF: A Hybrid Framework Based on Null Importances and Random Forest that Combines Multiple Features to Predict Ubiquitination Sites in
    Li X; Yuan Z; Chen Y
    Front Biosci (Landmark Ed); 2024 May; 29(5):197. PubMed ID: 38812315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. hCKSAAP_UbSite: improved prediction of human ubiquitination sites by exploiting amino acid pattern and properties.
    Chen Z; Zhou Y; Song J; Zhang Z
    Biochim Biophys Acta; 2013 Aug; 1834(8):1461-7. PubMed ID: 23603789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational identification of ubiquitination sites in Arabidopsis thaliana using convolutional neural networks.
    Wang X; Yan R; Chen YZ; Wang Y
    Plant Mol Biol; 2021 Apr; 105(6):601-610. PubMed ID: 33527202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of serine phosphorylation sites mapping on Schizosaccharomyces Pombe by fusing three encoding schemes with the random forest classifier.
    Tasmia SA; Kibria MK; Tuly KF; Islam MA; Khatun MS; Hasan MM; Mollah MNH
    Sci Rep; 2022 Feb; 12(1):2632. PubMed ID: 35173235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PseAraUbi: predicting arabidopsis ubiquitination sites by incorporating the physico-chemical and structural features.
    Wang W; Zhang Y; Liu D; Zhang H; Wang X; Zhou Y
    Plant Mol Biol; 2022 Sep; 110(1-2):81-92. PubMed ID: 35773617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of ubiquitination sites by using the composition of k-spaced amino acid pairs.
    Chen Z; Chen YZ; Wang XF; Wang C; Yan RX; Zhang Z
    PLoS One; 2011; 6(7):e22930. PubMed ID: 21829559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of mucin-type O-glycosylation sites in mammalian proteins using the composition of k-spaced amino acid pairs.
    Chen YZ; Tang YR; Sheng ZY; Zhang Z
    BMC Bioinformatics; 2008 Feb; 9():101. PubMed ID: 18282281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of phosphorylation sites based on Krawtchouk image moments.
    Wang X; Xu ML; Li BQ; Zhai HL; Liu JJ; Li SY
    Proteins; 2017 Dec; 85(12):2231-2238. PubMed ID: 28921635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PrUb-EL: A hybrid framework based on deep learning for identifying ubiquitination sites in Arabidopsis thaliana using ensemble learning strategy.
    Wang H; Li H; Gao W; Xie J
    Anal Biochem; 2022 Dec; 658():114935. PubMed ID: 36206844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Improved Computational Prediction Model for Lysine Succinylation Sites Mapping on
    Tasmia SA; Ahmed FF; Mosharaf P; Hasan M; Mollah NH
    Curr Genomics; 2021 Feb; 22(2):122-136. PubMed ID: 34220299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved Prediction of Protein-Protein Interaction Mapping on
    Islam MM; Alam MJ; Ahmed FF; Hasan MM; Mollah MNH
    Protein Pept Lett; 2021; 28(1):74-83. PubMed ID: 32520672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RFAthM6A: a new tool for predicting m
    Wang X; Yan R
    Plant Mol Biol; 2018 Feb; 96(3):327-337. PubMed ID: 29340952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational methods for ubiquitination site prediction using physicochemical properties of protein sequences.
    Cai B; Jiang X
    BMC Bioinformatics; 2016 Mar; 17():116. PubMed ID: 26940649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-scale prediction of protein ubiquitination sites using a multimodal deep architecture.
    He F; Wang R; Li J; Bao L; Xu D; Zhao X
    BMC Syst Biol; 2018 Nov; 12(Suppl 6):109. PubMed ID: 30463553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards Computational Models of Identifying Protein Ubiquitination Sites.
    Wang L; Zhang R
    Curr Drug Targets; 2019; 20(5):565-578. PubMed ID: 30246637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational Identification of Protein Pupylation Sites by Using Profile-Based Composition of k-Spaced Amino Acid Pairs.
    Hasan MM; Zhou Y; Lu X; Li J; Song J; Zhang Z
    PLoS One; 2015; 10(6):e0129635. PubMed ID: 26080082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Meta-i6mA: an interspecies predictor for identifying DNA N6-methyladenine sites of plant genomes by exploiting informative features in an integrative machine-learning framework.
    Hasan MM; Basith S; Khatun MS; Lee G; Manavalan B; Kurata H
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32910169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate in silico identification of protein succinylation sites using an iterative semi-supervised learning technique.
    Zhao X; Ning Q; Chai H; Ma Z
    J Theor Biol; 2015 Jun; 374():60-5. PubMed ID: 25843215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fuzzy based algorithms to predict MicroRNA regulated protein interaction pathways and ranking estimation in Arabidopsis thaliana.
    Manikandan P; Ramyachitra D; Nandhini R
    Gene; 2019 Apr; 692():170-175. PubMed ID: 30641215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.