These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 32114298)

  • 1. Enzymatic pre-treatment for enhancement of primary sludge fermentation.
    Bahreini G; Nazari L; Ho D; Flannery CC; Elbeshbishy E; Santoro D; Nakhla G
    Bioresour Technol; 2020 Jun; 305():123071. PubMed ID: 32114298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Primary filtration of municipal wastewater with sludge fermentation - Impacts on biological nutrient removal.
    Ossiansson E; Bengtsson S; Persson F; Cimbritz M; Gustavsson DJI
    Sci Total Environ; 2023 Dec; 902():166483. PubMed ID: 37611717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated fermentation and anaerobic digestion of primary sludges for simultaneous resource and energy recovery: Impact of volatile fatty acids recovery.
    Bahreini G; Elbeshbishy E; Jimenez J; Santoro D; Nakhla G
    Waste Manag; 2020 Dec; 118():341-349. PubMed ID: 32927387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological nutrient removal enhancement using fermented primary and rotating belt filter biosolids.
    Bahreini G; Elbahrawi M; Elbeshbishy E; Santoro D; Nakhla G
    Sci Total Environ; 2021 Nov; 796():148947. PubMed ID: 34273832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Seasonal variations in acidogenic fermentation of filter primary sludge.
    Ossiansson E; Persson F; Bengtsson S; Cimbritz M; Gustavsson DJI
    Water Res; 2023 Aug; 242():120181. PubMed ID: 37343334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volatile fatty acid production from primary and secondary sludges to support efficient nutrient management.
    Diaz R; Goswami A; Clark HC; Michelson R; Goel R
    Chemosphere; 2023 Sep; 336():138984. PubMed ID: 37315862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature-driven carboxylic acid production from waste activated sludge and food waste: Co-fermentation performance and microbial dynamics.
    Perez-Esteban N; Vives-Egea J; Peces M; Dosta J; Astals S
    Waste Manag; 2024 Apr; 178():176-185. PubMed ID: 38401431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physico-chemical characteristics and biodegradability of primary effluent and particulate matter removed by microscreens.
    Alizadeh S; Chowdhury P; Ghodsi V; Giaccherini F; Sarathy S; Santoro D; Comeau Y
    Water Environ Res; 2023 Apr; 95(4):e10854. PubMed ID: 36965038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Waste activated sludge fermentation: effect of solids retention time and biomass concentration.
    Yuan Q; Sparling R; Oleszkiewicz JA
    Water Res; 2009 Dec; 43(20):5180-6. PubMed ID: 19744692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excess sludge and herbaceous plant co-digestion for volatile fatty acids generation improved by protein and cellulose conversion enhancement.
    Zhang D; Fu X; Jia S; Dai L; Wu B; Dai X
    Environ Sci Pollut Res Int; 2016 Jan; 23(2):1492-504. PubMed ID: 26374544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of volatile fatty acids by fermentation of waste activated sludge pre-treated in full-scale thermal hydrolysis plants.
    Morgan-Sagastume F; Pratt S; Karlsson A; Cirne D; Lant P; Werker A
    Bioresour Technol; 2011 Feb; 102(3):3089-97. PubMed ID: 21075621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fate of cellulose in primary and secondary treatment at municipal water resource recovery facilities.
    Ahmed AS; Bahreini G; Ho D; Sridhar G; Gupta M; Wessels C; Marcelis P; Elbeshbishy E; Rosso D; Santoro D; Nakhla G
    Water Environ Res; 2019 Nov; 91(11):1479-1489. PubMed ID: 31099937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of sludge type on the fermentation products.
    Yuan Q; Baranowski M; Oleszkiewicz JA
    Chemosphere; 2010 Jun; 80(4):445-9. PubMed ID: 20444490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sieving of municipal wastewater and recovery of bio-based volatile fatty acids at pilot scale.
    Da Ros C; Conca V; Eusebi AL; Frison N; Fatone F
    Water Res; 2020 May; 174():115633. PubMed ID: 32109752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Upgrading volatile fatty acids production through anaerobic co-fermentation of mushroom residue and sewage sludge: Performance evaluation and kinetic analysis.
    Fang W; Zhang P; Zhang T; Requeson DC; Poser M
    J Environ Manage; 2019 Jul; 241():612-618. PubMed ID: 30962005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of cold and dilute sewage on pre-fermentation--a case study.
    Bixio D; van Hauwermeiren P; Thoeye C; Ockier P
    Water Sci Technol; 2001; 43(11):109-17. PubMed ID: 11443952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological hydrolysis and acidification of sludge under anaerobic conditions: the effect of sludge type and origin on the production and composition of volatile fatty acids.
    Ucisik AS; Henze M
    Water Res; 2008 Aug; 42(14):3729-38. PubMed ID: 18703214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acidogenic fermentation: utilization of wasted sludge as a carbon source in the denitrification process.
    Min KS; Park KS; Jung YJ; Khan AR; Kim YJ
    Environ Technol; 2002 Mar; 23(3):293-302. PubMed ID: 11999991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing volatile fatty acid production from sewage sludge in batch fermentation tests.
    Mineo A; Di Leto Y; Cosenza A; Capri FC; Gallo G; Alduina R; Ni BJ; Mannina G
    Chemosphere; 2024 Feb; 349():140859. PubMed ID: 38048828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.