These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 32114448)

  • 21. Recent progress in the drug development of coumarin derivatives as potent antituberculosis agents.
    Keri RS; Sasidhar BS; Nagaraja BM; Santos MA
    Eur J Med Chem; 2015 Jul; 100():257-69. PubMed ID: 26112067
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Substituted benzyl-pyrimidines targeting thymidine monophosphate kinase of Mycobacterium tuberculosis: synthesis and in vitro anti-mycobacterial activity.
    Gasse C; Douguet D; Huteau V; Marchal G; Munier-Lehmann H; Pochet S
    Bioorg Med Chem; 2008 Jun; 16(11):6075-85. PubMed ID: 18467107
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel and revisited approaches in antituberculosis drug discovery.
    Herrmann J; Rybniker J; Müller R
    Curr Opin Biotechnol; 2017 Dec; 48():94-101. PubMed ID: 28427007
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Drug targets exploited in Mycobacterium tuberculosis: Pitfalls and promises on the horizon.
    Bhat ZS; Rather MA; Maqbool M; Ahmad Z
    Biomed Pharmacother; 2018 Jul; 103():1733-1747. PubMed ID: 29864964
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent progress on pyrazole scaffold-based antimycobacterial agents.
    Keri RS; Chand K; Ramakrishnappa T; Nagaraja BM
    Arch Pharm (Weinheim); 2015 May; 348(5):299-314. PubMed ID: 25820461
    [TBL] [Abstract][Full Text] [Related]  

  • 26.
    Sawicki R; Ginalska G
    Future Med Chem; 2019 Aug; 11(16):2193-2203. PubMed ID: 31538522
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecule Property Analyses of Active Compounds for
    Makarov V; Salina E; Reynolds RC; Kyaw Zin PP; Ekins S
    J Med Chem; 2020 Sep; 63(17):8917-8955. PubMed ID: 32259446
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel drug discovery concept for tuberculosis: inhibition of bacterial and host cell signalling.
    Székely R; Wáczek F; Szabadkai I; Németh G; Hegymegi-Barakonyi B; Eros D; Szokol B; Pató J; Hafenbradl D; Satchell J; Saint-Joanis B; Cole ST; Orfi L; Klebl BM; Kéri G
    Immunol Lett; 2008 Mar; 116(2):225-31. PubMed ID: 18258308
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Discovery of bicyclic thymidine analogues as selective and high-affinity inhibitors of Mycobacterium tuberculosis thymidine monophosphate kinase.
    Vanheusden V; Munier-Lehmann H; Froeyen M; Busson R; Rozenski J; Herdewijn P; Van Calenbergh S
    J Med Chem; 2004 Dec; 47(25):6187-94. PubMed ID: 15566289
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Could Killing Bacterial Subpopulations Hit Tuberculosis out of the Park?
    Baranowski C; Rubin EJ
    J Med Chem; 2016 Jul; 59(13):6025-6. PubMed ID: 27322073
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Editorial: Current status and perspective on drug targets in tubercle bacilli and drug design of antituberculous agents based on structure-activity relationship.
    Tomioka H
    Curr Pharm Des; 2014; 20(27):4305-6. PubMed ID: 24245755
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mycobacterium tuberculosis cytochrome P450 enzymes: a cohort of novel TB drug targets.
    Hudson SA; McLean KJ; Munro AW; Abell C
    Biochem Soc Trans; 2012 Jun; 40(3):573-9. PubMed ID: 22616869
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mycobacterial DNA Replication as a Target for Antituberculosis Drug Discovery.
    Płocinska R; Korycka-Machala M; Plocinski P; Dziadek J
    Curr Top Med Chem; 2017 Jun; 17(19):2129-2142. PubMed ID: 28137234
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Resistance to antitubercular drugs in patients with tuberculosis registered in the antituberculosis clinics in Poland 1966-1980].
    Szczuka I
    Pneumonol Pol; 1982 Oct; 50(10):497-501. PubMed ID: 6820494
    [No Abstract]   [Full Text] [Related]  

  • 35. Current Advances in Antitubercular Drug Discovery: Potent Prototypes and New Targets.
    Dos Santos Fernandes GF; Jornada DH; de Souza PC; Chin CM; Pavan FR; Dos Santos JL
    Curr Med Chem; 2015; 22(27):3133-61. PubMed ID: 26282941
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 3D-Pharmacophore mapping of thymidine-based inhibitors of TMPK as potential antituberculosis agents.
    Andrade CH; Pasqualoto KF; Ferreira EI; Hopfinger AJ
    J Comput Aided Mol Des; 2010 Feb; 24(2):157-72. PubMed ID: 20217185
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Drugs versus bugs: in pursuit of the persistent predator Mycobacterium tuberculosis.
    Sacchettini JC; Rubin EJ; Freundlich JS
    Nat Rev Microbiol; 2008 Jan; 6(1):41-52. PubMed ID: 18079742
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Priming the tuberculosis drug pipeline: new antimycobacterial targets and agents.
    Evans JC; Mizrahi V
    Curr Opin Microbiol; 2018 Oct; 45():39-46. PubMed ID: 29482115
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of two-component systems in the physiology of Mycobacterium tuberculosis.
    Kundu M
    IUBMB Life; 2018 Aug; 70(8):710-717. PubMed ID: 29885211
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thymidine and thymidine-5'-O-monophosphate analogues as inhibitors of Mycobacterium tuberculosis thymidylate kinase.
    Vanheusden V; Van Rompaey P; Munier-Lehmann H; Pochet S; Herdewijn P; Van Calenbergh S
    Bioorg Med Chem Lett; 2003 Sep; 13(18):3045-8. PubMed ID: 12941330
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.