These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 32114917)

  • 1. Interference in multi-user optical wireless communications systems.
    Abdalla I; Rahaim MB; Little TDC
    Philos Trans A Math Phys Eng Sci; 2020 Apr; 378(2169):20190190. PubMed ID: 32114917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Indoor multiuser visible light communication systems using Hadamard-coded modulation.
    Lian J; Noshad M; Brandt-Pearce M
    Philos Trans A Math Phys Eng Sci; 2020 Apr; 378(2169):20190183. PubMed ID: 32114925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Channel modelling for indoor visible light communications.
    Miramirkhani F; Uysal M
    Philos Trans A Math Phys Eng Sci; 2020 Apr; 378(2169):20190187. PubMed ID: 32114913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Comprehensive Open-Source Simulation Framework for LiFi Communication.
    Ullah S; Rehman SU; Chong PHJ
    Sensors (Basel); 2021 Apr; 21(7):. PubMed ID: 33918501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Addressing Multi-User Interference in Vehicular Visible Light Communications: A Brief Survey and an Evaluation of Optical CDMA MAC Utilization in a Multi-Lane Scenario.
    Plascencia E; Guan H; Chassagne L; Căilean AM; Barrois O; Shagdar O
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Comprehensive Investigation on Multi-User Interference Effects in Vehicular Visible Light Communications.
    Plascencia E; Guan H; Chassagne L; Barrois O; Shagdar O; Căilean AM
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Survey on Optical Wireless Communications-Based Services Applied to the Tourism Industry: Potentials and Challenges.
    Aguiar-Castillo L; Guerra V; Rufo J; Rabadan J; Perez-Jimenez R
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical wireless communication.
    Haas H; Elmirghani J; White I
    Philos Trans A Math Phys Eng Sci; 2020 Apr; 378(2169):20200051. PubMed ID: 32114912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gallium nitride micro-light-emitting diode structured light sources for multi-modal optical wireless communications systems.
    Griffiths AD; Herrnsdorf J; McKendry JJD; Strain MJ; Dawson MD
    Philos Trans A Math Phys Eng Sci; 2020 Apr; 378(2169):20190185. PubMed ID: 32114910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. VLC, OCC, IR and LiFi Reliable Optical Wireless Technologies to be Embedded in Medical Facilities and Medical Devices.
    Riurean S; Antipova T; Rocha Á; Leba M; Ionica A
    J Med Syst; 2019 Aug; 43(10):308. PubMed ID: 31432270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-Vehicle Visible Light Communications Data Transmission System Using Optical Fiber Distributed Light: Implementation and Experimental Evaluation.
    Beguni C; Căilean AM; Avătămăniței SA; Zadobrischi E; Stoler R; Dimian M; Popa V; Béchadergue B; Chassagne L
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Networked multiple-input-multiple-output for optical wireless communication systems.
    Wang Z; Chen J
    Philos Trans A Math Phys Eng Sci; 2020 Apr; 378(2169):20190189. PubMed ID: 32114914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carrierless amplitude and phase modulation in wireless visible light communication systems.
    Bamiedakis N; Penty RV; White IH
    Philos Trans A Math Phys Eng Sci; 2020 Apr; 378(2169):20190181. PubMed ID: 32114921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transmitter and receiver technologies for optical wireless.
    O'Brien D; Rajbhandari S; Chun H
    Philos Trans A Math Phys Eng Sci; 2020 Apr; 378(2169):20190182. PubMed ID: 32114919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultra-high-capacity wireless communication by means of steered narrow optical beams.
    Koonen T; Mekonnen K; Cao Z; Huijskens F; Pham NQ; Tangdiongga E
    Philos Trans A Math Phys Eng Sci; 2020 Apr; 378(2169):20190192. PubMed ID: 32114920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-Phase Handover Management and Access Point Transition Scheme for Dynamic Load Balancing in Hybrid LiFi/WiFi Networks.
    Murad SS; Yussof S; Hashim W; Badeel R
    Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inter-cell interference mitigation in multi-cellular visible light communications.
    Jung SY; Kwon DH; Yang SH; Han SK
    Opt Express; 2016 Apr; 24(8):8512-26. PubMed ID: 27137289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physical layer security in light-fidelity systems.
    Zhang Z; Chaaban A; Lampe L
    Philos Trans A Math Phys Eng Sci; 2020 Apr; 378(2169):20190193. PubMed ID: 32114918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of Hybrid LiFi-WiFi Networks: A Survey.
    Besjedica T; Fertalj K; Lipovac V; Zakarija I
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Convex relaxation for illumination control of multi-color multiple-input-multiple-output visible light communications with linear minimum mean square error detection.
    Dong J; Zhang Y; Zhu Y
    Appl Opt; 2017 Aug; 56(23):6587-6595. PubMed ID: 29047951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.