These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 32114924)

  • 1. Distortion losses of high-speed single-photon avalanche diode optical receivers approaching quantum sensitivity.
    Kosman J; Moore K; Haas H; Henderson RK
    Philos Trans A Math Phys Eng Sci; 2020 Apr; 378(2169):20190194. PubMed ID: 32114924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 5 Gbps optical wireless communication using commercial SPAD array receivers.
    Huang S; Chen C; Bian R; Haas H; Safari M
    Opt Lett; 2022 May; 47(9):2294-2297. PubMed ID: 35486783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Sensitive SPAD-Based Receiver for Dimming Control in LiFi Networks.
    Hijazi M; Huang S; Safari M
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated fiber optical receiver reducing the gap to the quantum limit.
    Zimmermann H; Steindl B; Hofbauer M; Enne R
    Sci Rep; 2017 Jun; 7(1):2652. PubMed ID: 28572578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual anode single-photon avalanche diode for high-speed and low-noise Geiger-mode operation.
    Park C; Cho SB; Park CY; Baek S; Han SK
    Opt Express; 2019 Jun; 27(13):18201-18209. PubMed ID: 31252767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling and Analysis of Capacitive Relaxation Quenching in a Single Photon Avalanche Diode (SPAD) Applied to a CMOS Image Sensor.
    Inoue A; Okino T; Koyama S; Hirose Y
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32466348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Error performance analysis of a non-ideal photon counting array receiver system for optical wireless communication.
    Wang C; Wang J; Xu Z; Wang R; Zhao J; Wei Y
    Appl Opt; 2018 Aug; 57(23):6651-6656. PubMed ID: 30129608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytical Evaluation of Signal-to-Noise Ratios for Avalanche- and Single-Photon Avalanche Diodes.
    Buchner A; Hadrath S; Burkard R; Kolb FM; Ruskowski J; Ligges M; Grabmaier A
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33924194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Underwater wireless optical communication using an arrayed transmitter/receiver and optical superimposition-based PAM-4 signal.
    Kong M; Chen Y; Sarwar R; Sun B; Xu Z; Han J; Chen J; Qin H; Xu J
    Opt Express; 2018 Feb; 26(3):3087-3097. PubMed ID: 29401841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AlInAsSb Geiger-mode SWIR and eSWIR SPADs with high avalanche probability.
    Herrera DJ; Dadey AA; March SD; Bank SR; Campbell JC
    Opt Express; 2024 Jan; 32(2):2106-2113. PubMed ID: 38297747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast fully-integrated front-end circuit to overcome pile-up limits in time-correlated single photon counting with single photon avalanche diodes.
    Acconcia G; Cominelli A; Ghioni M; Rech I
    Opt Express; 2018 Jun; 26(12):15398-15410. PubMed ID: 30114802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-Photon Avalanche Diode with Enhanced NIR-Sensitivity for Automotive LIDAR Systems.
    Takai I; Matsubara H; Soga M; Ohta M; Ogawa M; Yamashita T
    Sensors (Basel); 2016 Mar; 16(4):459. PubMed ID: 27043569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical wireless APD receivers in 0.35 µm HV CMOS technology with large detection area.
    Milovančev D; Brandl P; Jukić T; Steindl B; Vokić N; Zimmermann H
    Opt Express; 2019 Apr; 27(9):11930-11945. PubMed ID: 31052741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling for Single-Photon Avalanche Diodes: State-of-the-Art and Research Challenges.
    Qian X; Jiang W; Elsharabasy A; Deen MJ
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-noise low-jitter 32-pixels CMOS single-photon avalanche diodes array for single-photon counting from 300 nm to 900 nm.
    Scarcella C; Tosi A; Villa F; Tisa S; Zappa F
    Rev Sci Instrum; 2013 Dec; 84(12):123112. PubMed ID: 24387425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photon-Counting Underwater Optical Wireless Communication for Reliable Video Transmission Using Joint Source-Channel Coding Based on Distributed Compressive Sensing.
    Hong Z; Yan Q; Li Z; Zhan T; Wang Y
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30823639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-range underwater optical wireless communication systems in turbulent conditions.
    Sabbagh AG
    Opt Express; 2023 Jun; 31(13):21311-21329. PubMed ID: 37381233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study of pile-up in integrated time-correlated single photon counting systems.
    Arlt J; Tyndall D; Rae BR; Li DD; Richardson JA; Henderson RK
    Rev Sci Instrum; 2013 Oct; 84(10):103105. PubMed ID: 24182099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 48-pixel array of Single Photon Avalanche Diodes for multispot Single Molecule analysis.
    Gulinatti A; Rech I; Maccagnani P; Ghioni M
    Proc SPIE Int Soc Opt Eng; 2013 Feb; 8631():86311D-. PubMed ID: 24357913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling, Simulation Methods and Characterization of Photon Detection Probability in CMOS-SPAD.
    Panglosse A; Martin-Gonthier P; Marcelot O; Virmontois C; Saint-Pé O; Magnan P
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.