These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 32114925)

  • 21. In-Vehicle Visible Light Communications Data Transmission System Using Optical Fiber Distributed Light: Implementation and Experimental Evaluation.
    Beguni C; Căilean AM; Avătămăniței SA; Zadobrischi E; Stoler R; Dimian M; Popa V; Béchadergue B; Chassagne L
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146084
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Data transmission scheme based on the DC-QOSTBC in indoor MIMO-VLC systems.
    Bao J; Chen I; Peng C
    Appl Opt; 2021 Jun; 60(18):5365-5375. PubMed ID: 34263774
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Research and Implementation of Indoor 3D Positioning Algorithm Based on LED Visible Light Communication and Corresponding Parameter Estimation.
    Li Y
    Comput Intell Neurosci; 2022; 2022():2940558. PubMed ID: 36148418
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recurrent neural network (RNN) for delay-tolerant repetition-coded (RC) indoor optical wireless communication systems.
    He J; Lee J; Song T; Li H; Kandeepan S; Wang K
    Opt Lett; 2019 Aug; 44(15):3745-3748. PubMed ID: 31368958
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improvement of indoor VLC network downlink scheduling and resource allocation.
    Chen Y; Kelly AE; Marsh JH
    Opt Express; 2016 Nov; 24(23):26838-26850. PubMed ID: 27857412
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Increasing Vehicular Visible Light Communications Range Based on LED Current Overdriving and Variable Pulse Position Modulation: Concept and Experimental Validation.
    Beguni C; Căilean AM; Avătămăniței SA; Potorac AD; Zadobrischi E; Dimian M
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050717
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Distributed user-centric scheduling for visible light communication networks.
    Chen L; Wang J; Zhou J; Ng DW; Schober R; Zhao C
    Opt Express; 2016 Jul; 24(14):15570-89. PubMed ID: 27410830
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optical Beam Steerable Visible Light Communication (VLC) System Supporting Multiple Users Using RGB and Orthogonal Frequency Division Multiplexed (OFDM) Non-Orthogonal Multiple Access (NOMA).
    Gunawan WH; Chow CW; Liu Y; Chang YH; Yeh CH
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433304
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Networked multiple-input-multiple-output for optical wireless communication systems.
    Wang Z; Chen J
    Philos Trans A Math Phys Eng Sci; 2020 Apr; 378(2169):20190189. PubMed ID: 32114914
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Towards a 100 Gb/s visible light wireless access network.
    Tsonev D; Videv S; Haas H
    Opt Express; 2015 Jan; 23(2):1627-37. PubMed ID: 25835920
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Addressing Multi-User Interference in Vehicular Visible Light Communications: A Brief Survey and an Evaluation of Optical CDMA MAC Utilization in a Multi-Lane Scenario.
    Plascencia E; Guan H; Chassagne L; Căilean AM; Barrois O; Shagdar O
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112170
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Visible light communication with efficient far-red/near-infrared polymer light-emitting diodes.
    Minotto A; Haigh PA; Łukasiewicz ŁG; Lunedei E; Gryko DT; Darwazeh I; Cacialli F
    Light Sci Appl; 2020; 9():70. PubMed ID: 32351694
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On the Use of Class D Switching-Mode Power Amplifiers in Visible Light Communication Transmitters.
    García-Meré JR; Rodríguez J; Lamar DG; Sebastián J
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808355
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Experimental Demonstration of a Visible Light Communications System Based on Binary Frequency-Shift Keying Modulation: A New Step toward Improved Noise Resilience.
    Beguni C; Done A; Căilean AM; Avătămăniței SA; Zadobrischi E
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299727
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exploring the effect of LED nonlinearity on the performance of layered ACO-OFDM.
    Abd Elkarim M; Elsherbini MM; AbdelKader HM; Aly MH
    Appl Opt; 2020 Aug; 59(24):7343-7351. PubMed ID: 32902501
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Indoor receiving signal strength based visible light positioning enabled with equivalent virtual lamps.
    Sun W; Chen J; Yu C
    Appl Opt; 2023 Jun; 62(17):4583-4590. PubMed ID: 37707155
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimum resource allocation in optical wireless systems with energy-efficient fog and cloud architectures.
    Alsulami OZ; Alahmadi AA; Saeed SOM; Mohamed SH; El-Gorashi TEH; Alresheedi MT; Elmirghani JMH
    Philos Trans A Math Phys Eng Sci; 2020 Apr; 378(2169):20190188. PubMed ID: 32114911
    [TBL] [Abstract][Full Text] [Related]  

  • 38. NOMA-Based VLC Systems: A Comprehensive Review.
    Mohsan SAH; Sadiq M; Li Y; Shvetsov AV; Shvetsova SV; Shafiq M
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991671
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimal LED placement in indoor VLC networks.
    Vegni AM; Biagi M
    Opt Express; 2019 Mar; 27(6):8504-8519. PubMed ID: 31052666
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hybrid NOMA/OFDMA visible light communication system with coordinated multiple point transmission.
    Guo X; Luo Y
    Opt Express; 2022 Dec; 30(26):47404-47420. PubMed ID: 36558669
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.