BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 32115492)

  • 1. Implications of the circadian clock in implant dentistry.
    Okawa H; Egusa H; Nishimura I
    Dent Mater J; 2020 Mar; 39(2):173-180. PubMed ID: 32115492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for clock genes circadian rhythms in human full-term placenta.
    Pérez S; Murias L; Fernández-Plaza C; Díaz I; González C; Otero J; Díaz E
    Syst Biol Reprod Med; 2015; 61(6):360-6. PubMed ID: 26247999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cycling of CRYPTOCHROME proteins is not necessary for circadian-clock function in mammalian fibroblasts.
    Fan Y; Hida A; Anderson DA; Izumo M; Johnson CH
    Curr Biol; 2007 Jul; 17(13):1091-100. PubMed ID: 17583506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of a repressive complex in the mammalian circadian clock is mediated by the secondary pocket of CRY1.
    Michael AK; Fribourgh JL; Chelliah Y; Sandate CR; Hura GL; Schneidman-Duhovny D; Tripathi SM; Takahashi JS; Partch CL
    Proc Natl Acad Sci U S A; 2017 Feb; 114(7):1560-1565. PubMed ID: 28143926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Circadian rhythms affect bone reconstruction by regulating bone energy metabolism.
    Luo B; Zhou X; Tang Q; Yin Y; Feng G; Li S; Chen L
    J Transl Med; 2021 Sep; 19(1):410. PubMed ID: 34579752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The tail of cryptochromes: an intrinsically disordered cog within the mammalian circadian clock.
    Parico GCG; Partch CL
    Cell Commun Signal; 2020 Nov; 18(1):182. PubMed ID: 33198762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rhythmic histone acetylation underlies transcription in the mammalian circadian clock.
    Etchegaray JP; Lee C; Wade PA; Reppert SM
    Nature; 2003 Jan; 421(6919):177-82. PubMed ID: 12483227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mammalian Period represses and de-represses transcription by displacing CLOCK-BMAL1 from promoters in a Cryptochrome-dependent manner.
    Chiou YY; Yang Y; Rashid N; Ye R; Selby CP; Sancar A
    Proc Natl Acad Sci U S A; 2016 Oct; 113(41):E6072-E6079. PubMed ID: 27688755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circadian clock as a possible control point in colorectal cancer progression (Review).
    Rao X; Lin L
    Int J Oncol; 2022 Dec; 61(6):. PubMed ID: 36263655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Melatonin feedback on clock genes: a theory involving the proteasome.
    Vriend J; Reiter RJ
    J Pineal Res; 2015 Jan; 58(1):1-11. PubMed ID: 25369242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cryptochromes impair phosphorylation of transcriptional activators in the clock: a general mechanism for circadian repression.
    Dardente H; Fortier EE; Martineau V; Cermakian N
    Biochem J; 2007 Mar; 402(3):525-36. PubMed ID: 17115977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circadian clock genes directly regulate expression of the Na(+)/H(+) exchanger NHE3 in the kidney.
    Saifur Rohman M; Emoto N; Nonaka H; Okura R; Nishimura M; Yagita K; van der Horst GT; Matsuo M; Okamura H; Yokoyama M
    Kidney Int; 2005 Apr; 67(4):1410-9. PubMed ID: 15780093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The molecular clockwork of the fire ant Solenopsis invicta.
    Ingram KK; Kutowoi A; Wurm Y; Shoemaker D; Meier R; Bloch G
    PLoS One; 2012; 7(11):e45715. PubMed ID: 23152747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of cell-autonomous circadian oscillation of Cry transcription in circadian rhythm generation.
    Matsumura R; Yoshimi K; Sawai Y; Yasumune N; Kajihara K; Maejima T; Koide T; Node K; Akashi M
    Cell Rep; 2022 Apr; 39(3):110703. PubMed ID: 35443162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulatory Effects of Clock and Bmal1 on Circadian Rhythmic TLR Expression.
    Fan XL; Song Y; Qin DX; Lin PY
    Int Rev Immunol; 2023; 42(2):101-112. PubMed ID: 34544330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of interactions among circadian clock proteins via surface plasmon resonance.
    Kepsutlu B; Kizilel R; Kizilel S
    J Mol Recognit; 2014 Jul; 27(7):458-69. PubMed ID: 24895278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential patterns in the periodicity and dynamics of clock gene expression in mouse liver and stomach.
    Mazzoccoli G; Francavilla M; Pazienza V; Benegiamo G; Piepoli A; Vinciguerra M; Giuliani F; Yamamoto T; Takumi T
    Chronobiol Int; 2012 Dec; 29(10):1300-11. PubMed ID: 23131081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuronal PAS domain 2 (Npas2) facilitated osseointegration of titanium implant with rough surface through a neuroskeletal mechanism.
    Morinaga K; Sasaki H; Park S; Hokugo A; Okawa H; Tahara Y; Colwell CS; Nishimura I
    Biomaterials; 2019 Feb; 192():62-74. PubMed ID: 30428407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clock genes alterations and endocrine disorders.
    Angelousi A; Kassi E; Nasiri-Ansari N; Weickert MO; Randeva H; Kaltsas G
    Eur J Clin Invest; 2018 Jun; 48(6):e12927. PubMed ID: 29577261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Molecular oscillatory machinery of circadian rhythms].
    Yamaguchi Y; Okamura H
    Nihon Rinsho; 2012 Jul; 70(7):1115-20. PubMed ID: 22844791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.