BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 32115529)

  • 1. Strategies for Design of Molecular Structures with a Desired Pharmacophore Using Deep Reinforcement Learning.
    Yoshimori A; Kawasaki E; Kanai C; Tasaka T
    Chem Pharm Bull (Tokyo); 2020; 68(3):227-233. PubMed ID: 32115529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep reinforcement learning for de novo drug design.
    Popova M; Isayev O; Tropsha A
    Sci Adv; 2018 Jul; 4(7):eaap7885. PubMed ID: 30050984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A pharmacophore-guided deep learning approach for bioactive molecular generation.
    Zhu H; Zhou R; Cao D; Tang J; Li M
    Nat Commun; 2023 Oct; 14(1):6234. PubMed ID: 37803000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RELATION: A Deep Generative Model for Structure-Based De Novo Drug Design.
    Wang M; Hsieh CY; Wang J; Wang D; Weng G; Shen C; Yao X; Bing Z; Li H; Cao D; Hou T
    J Med Chem; 2022 Jul; 65(13):9478-9492. PubMed ID: 35713420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and Synthesis of DDR1 Inhibitors with a Desired Pharmacophore Using Deep Generative Models.
    Yoshimori A; Asawa Y; Kawasaki E; Tasaka T; Matsuda S; Sekikawa T; Tanabe S; Neya M; Natsugari H; Kanai C
    ChemMedChem; 2021 Mar; 16(6):955-958. PubMed ID: 33289306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D-Scaffold: A Deep Learning Framework to Generate 3D Coordinates of Drug-like Molecules with Desired Scaffolds.
    Joshi RP; Gebauer NWA; Bontha M; Khazaieli M; James RM; Brown JB; Kumar N
    J Phys Chem B; 2021 Nov; 125(44):12166-12176. PubMed ID: 34662142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving drug discovery with a hybrid deep generative model using reinforcement learning trained on a Bayesian docking approximation.
    Xiong Y; Wang Y; Wang Y; Li C; Yusong P; Wu J; Wang Y; Gu L; Butch CJ
    J Comput Aided Mol Des; 2023 Nov; 37(11):507-517. PubMed ID: 37550462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. De novo design with deep generative models based on 3D similarity scoring.
    Papadopoulos K; Giblin KA; Janet JP; Patronov A; Engkvist O
    Bioorg Med Chem; 2021 Aug; 44():116308. PubMed ID: 34280849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances and Challenges in De Novo Drug Design Using Three-Dimensional Deep Generative Models.
    Xie W; Wang F; Li Y; Lai L; Pei J
    J Chem Inf Model; 2022 May; 62(10):2269-2279. PubMed ID: 35544331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. De Novo Molecular Design by Combining Deep Autoencoder Recurrent Neural Networks with Generative Topographic Mapping.
    Sattarov B; Baskin II; Horvath D; Marcou G; Bjerrum EJ; Varnek A
    J Chem Inf Model; 2019 Mar; 59(3):1182-1196. PubMed ID: 30785751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning for molecular generation.
    Xu Y; Lin K; Wang S; Wang L; Cai C; Song C; Lai L; Pei J
    Future Med Chem; 2019 Mar; 11(6):567-597. PubMed ID: 30698019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generative Deep Learning for Targeted Compound Design.
    Sousa T; Correia J; Pereira V; Rocha M
    J Chem Inf Model; 2021 Nov; 61(11):5343-5361. PubMed ID: 34699719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep inverse reinforcement learning for structural evolution of small molecules.
    Agyemang B; Wu WP; Addo D; Kpiebaareh MY; Nanor E; Roland Haruna C
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33348357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning driven de novo drug design based on gastric proton pump structures.
    Abe K; Ozako M; Inukai M; Matsuyuki Y; Kitayama S; Kanai C; Nagai C; Gopalasingam CC; Gerle C; Shigematsu H; Umekubo N; Yokoshima S; Yoshimori A
    Commun Biol; 2023 Sep; 6(1):956. PubMed ID: 37726448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. De novo design based pharmacophore query generation and virtual screening for the discovery of Hsp-47 inhibitors.
    Katarkar A; Haldar PK; Chaudhuri K
    Biochem Biophys Res Commun; 2015 Jan; 456(3):707-13. PubMed ID: 25522881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. De novo generation of dual-target ligands using adversarial training and reinforcement learning.
    Lu F; Li M; Min X; Li C; Zeng X
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34410338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The power of deep learning to ligand-based novel drug discovery.
    Baskin II
    Expert Opin Drug Discov; 2020 Jul; 15(7):755-764. PubMed ID: 32228116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing reinforcement learning for de novo molecular design applying self-attention mechanisms.
    Pereira TO; Abbasi M; Arrais JP
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37903414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Generative Models for Molecular Science.
    Jørgensen PB; Schmidt MN; Winther O
    Mol Inform; 2018 Jan; 37(1-2):. PubMed ID: 29405647
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Atance SR; Diez JV; Engkvist O; Olsson S; Mercado R
    J Chem Inf Model; 2022 Oct; 62(20):4863-4872. PubMed ID: 36219571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.