These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 32115642)

  • 1. Theory underpinning multislice simulations with plasmon energy losses.
    Mendis BG
    Microscopy (Oxf); 2020 May; 69(3):173-175. PubMed ID: 32115642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An inelastic multislice simulation method incorporating plasmon energy losses.
    Mendis BG
    Ultramicroscopy; 2019 Nov; 206():112816. PubMed ID: 31377522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling dynamical 3D electron diffraction intensities. II. The role of inelastic scattering.
    Mendis B
    Acta Crystallogr A Found Adv; 2024 Mar; 80(Pt 2):178-188. PubMed ID: 38270201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A "Phase Scrambling" Algorithm for Parallel Multislice Simulation of Multiple Phonon and Plasmon Scattering Configurations.
    Mendis BG
    Microsc Microanal; 2023 Jun; 29(3):1111-1123. PubMed ID: 37749702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum-trajectory Monte Carlo method for study of electron-crystal interaction in STEM.
    Ruan Z; Zeng RG; Ming Y; Zhang M; Da B; Mao SF; Ding ZJ
    Phys Chem Chem Phys; 2015 Jul; 17(27):17628-37. PubMed ID: 26082190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inelastic Scattering in Electron Backscatter Diffraction and Electron Channeling Contrast Imaging.
    Mendis BG; Barthel J; Findlay SD; Allen LJ
    Microsc Microanal; 2020 Dec; 26(6):1147-1157. PubMed ID: 33190677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SU-E-T-489: Quantum versus Classical Trajectory Monte Carlo Simulations of Low Energy Electron Transport.
    Thomson R; Kawrakow I
    Med Phys; 2012 Jun; 39(6Part17):3817-3818. PubMed ID: 28517446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum versus classical Monte Carlo simulation of low-energy electron transport in condensed amorphous media.
    Thomson RM; Kawrakow I
    Phys Med; 2018 Oct; 54():179-188. PubMed ID: 30007841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elastic scattering of high-energy electrons by dopant atoms within a crystal in transmission electron microscopy.
    Mendis BG
    Acta Crystallogr A; 2008 Nov; 64(Pt 6):613-24. PubMed ID: 18931417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-energy electron properties: Electron inelastic mean free path, energy loss function and the dielectric function. Recent measurements, applications, and the plasmon-coupling theory.
    Chantler CT; Bourke JD
    Ultramicroscopy; 2019 Jun; 201():38-48. PubMed ID: 30925298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The significance of electron binding corrections in Monte Carlo photon transport calculations.
    Williamson JF; Deibel FC; Morin RL
    Phys Med Biol; 1984 Sep; 29(9):1063-73. PubMed ID: 6483972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An accurate approximation for the highly efficient sampling of polar scattering angle of electron elastic single-scattering events.
    Pasciak AS; Ford JR
    Scanning; 2006; 28(6):333-41. PubMed ID: 17181135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lattice-resolution contrast from a focused coherent electron probe. Part I.
    Allen LJ; Findlay SD; Oxley MP; Rossouw CJ
    Ultramicroscopy; 2003 Jul; 96(1):47-63. PubMed ID: 12623171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decomposition of a laser-Doppler spectrum for estimation of speed distribution of particles moving in an optically turbid medium: Monte Carlo validation study.
    Liebert A; Zołek N; Maniewski R
    Phys Med Biol; 2006 Nov; 51(22):5737-51. PubMed ID: 17068362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constraints of the multiple-scattering theory of Molière in Monte Carlo simulations of the transport of charged particles.
    Andreo P; Medin J; Bielajew AF
    Med Phys; 1993; 20(5):1315-25. PubMed ID: 8289712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of inelastic scattering on EFTEM images--exemplified at 20 kV for graphene and silicon.
    Lee Z; Rose H; Hambach R; Wachsmuth P; Kaiser U
    Ultramicroscopy; 2013 Nov; 134():102-12. PubMed ID: 23870401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of elastic and inelastic scattering in giving electrons tortuous paths in matter.
    Turner JE; Hamm RN
    Health Phys; 1995 Sep; 69(3):378-84. PubMed ID: 7635734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Positron follow-up in liquid water: I. A new Monte Carlo track-structure code.
    Champion C; Le Loirec C
    Phys Med Biol; 2006 Apr; 51(7):1707-23. PubMed ID: 16552099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Absolute cross section measurements for the scattering of low- and intermediate-energy electrons from PF
    Hishiyama N; Hoshino M; Blanco F; García G; Tanaka H
    J Chem Phys; 2017 Dec; 147(22):224308. PubMed ID: 29246048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multislice theory of fast electron scattering incorporating atomic inner-shell ionization.
    Dwyer C
    Ultramicroscopy; 2005 Sep; 104(2):141-51. PubMed ID: 15876497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.