These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 32115727)

  • 1. Replication Fork Barriers and Topological Barriers: Progression of DNA Replication Relies on DNA Topology Ahead of Forks.
    Schvartzman JB; Hernández P; Krimer DB
    Bioessays; 2020 May; 42(5):e1900204. PubMed ID: 32115727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-molecule mapping of replisome progression.
    Claussin C; Vazquez J; Whitehouse I
    Mol Cell; 2022 Apr; 82(7):1372-1382.e4. PubMed ID: 35240057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular anatomy and regulation of a stable replisome at a paused eukaryotic DNA replication fork.
    Calzada A; Hodgson B; Kanemaki M; Bueno A; Labib K
    Genes Dev; 2005 Aug; 19(16):1905-19. PubMed ID: 16103218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmid DNA replication and topology as visualized by two-dimensional agarose gel electrophoresis.
    Schvartzman JB; Martínez-Robles ML; Hernández P; Krimer DB
    Plasmid; 2010 Jan; 63(1):1-10. PubMed ID: 19925824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Evidence for the Formation of Precatenanes during DNA Replication.
    Cebrián J; Castán A; Martínez V; Kadomatsu-Hermosa MJ; Parra C; Fernández-Nestosa MJ; Schaerer C; Hernández P; Krimer DB; Schvartzman JB
    J Biol Chem; 2015 May; 290(22):13725-35. PubMed ID: 25829493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fork pausing complex engages topoisomerases at the replisome.
    Shyian M; Albert B; Zupan AM; Ivanitsa V; Charbonnet G; Dilg D; Shore D
    Genes Dev; 2020 Jan; 34(1-2):87-98. PubMed ID: 31805522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Replication fork stalling elicits chromatin compaction for the stability of stalling replication forks.
    Feng G; Yuan Y; Li Z; Wang L; Zhang B; Luo J; Ji J; Kong D
    Proc Natl Acad Sci U S A; 2019 Jul; 116(29):14563-14572. PubMed ID: 31262821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution of torsional stress between the un-replicated and replicated regions in partially replicated molecules.
    Martínez V; Schaerer C; Hernández P; Krimer DB; Schvartzman JB; Fernández-Nestosa MJ
    J Biomol Struct Dyn; 2021 Apr; 39(6):2266-2277. PubMed ID: 32238092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fork rotation and DNA precatenation are restricted during DNA replication to prevent chromosomal instability.
    Schalbetter SA; Mansoubi S; Chambers AL; Downs JA; Baxter J
    Proc Natl Acad Sci U S A; 2015 Aug; 112(33):E4565-70. PubMed ID: 26240319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Replisome structure suggests mechanism for continuous fork progression and post-replication repair.
    Yang W; Seidman MM; Rupp WD; Gao Y
    DNA Repair (Amst); 2019 Sep; 81():102658. PubMed ID: 31303546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Helicases at the replication fork.
    McGlynn P
    Adv Exp Med Biol; 2013; 767():97-121. PubMed ID: 23161008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Directionality of replication fork movement determined by two-dimensional native-native DNA agarose gel electrophoresis.
    Ivessa AS
    Methods Mol Biol; 2013; 1054():83-103. PubMed ID: 23913286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA Catenation Reveals the Dynamics of DNA Topology During Replication.
    Castán A; Hernández P; Krimer DB; Schvartzman JB
    Methods Mol Biol; 2018; 1703():75-86. PubMed ID: 29177734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying Replication Fork Progression at CTG Repeats by 2D Gel Electrophoresis.
    Viterbo D; Richard GF
    Methods Mol Biol; 2020; 2056():69-81. PubMed ID: 31586341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Timely release of both replication forks from oriC requires modulation of origin topology.
    Smelkova N; Marians KJ
    J Biol Chem; 2001 Oct; 276(42):39186-91. PubMed ID: 11504719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The ZATT-TOP2A-PICH Axis Drives Extensive Replication Fork Reversal to Promote Genome Stability.
    Tian T; Bu M; Chen X; Ding L; Yang Y; Han J; Feng XH; Xu P; Liu T; Ying S; Lei Y; Li Q; Huang J
    Mol Cell; 2021 Jan; 81(1):198-211.e6. PubMed ID: 33296677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The nonmutagenic repair of broken replication forks via recombination.
    Cox MM
    Mutat Res; 2002 Dec; 510(1-2):107-20. PubMed ID: 12459447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The HIRAN domain of helicase-like transcription factor positions the DNA translocase motor to drive efficient DNA fork regression.
    Chavez DA; Greer BH; Eichman BF
    J Biol Chem; 2018 Jun; 293(22):8484-8494. PubMed ID: 29643183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Approaching Protein Barriers: Emerging Mechanisms of Replication Pausing in Eukaryotes.
    Shyian M; Shore D
    Front Cell Dev Biol; 2021; 9():672510. PubMed ID: 34124054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleases Acting at Stalled Forks: How to Reboot the Replication Program with a Few Shortcuts.
    Pasero P; Vindigni A
    Annu Rev Genet; 2017 Nov; 51():477-499. PubMed ID: 29178820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.