These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 32116223)
1. [Modification of cysteine residues for mass spectrometry-based proteomic analysis: facts and artifacts]. Kuznetsova KG; Solovyeva EM; Kuzikov AV; Gorshkov MV; Moshkovskii SA Biomed Khim; 2020 Jan; 66(1):18-29. PubMed ID: 32116223 [TBL] [Abstract][Full Text] [Related]
2. The Impact of Commonly Used Alkylating Agents on Artifactual Peptide Modification. Hains PG; Robinson PJ J Proteome Res; 2017 Sep; 16(9):3443-3447. PubMed ID: 28799334 [TBL] [Abstract][Full Text] [Related]
3. Cysteine alkylation methods in shotgun proteomics and their possible effects on methionine residues. Kuznetsova KG; Levitsky LI; Pyatnitskiy MA; Ilina IY; Bubis JA; Solovyeva EM; Zgoda VG; Gorshkov MV; Moshkovskii SA J Proteomics; 2021 Jan; 231():104022. PubMed ID: 33096305 [TBL] [Abstract][Full Text] [Related]
4. Ion source-dependent performance of 4-vinylpyridine, iodoacetamide, and N-maleoyl derivatives for the detection of cysteine-containing peptides in complex proteomics. Nadler W; Berg R; Walch P; Hanke S; Baalmann M; Kerner A; Trumpp A; Roesli C Anal Bioanal Chem; 2016 Mar; 408(8):2055-67. PubMed ID: 26493978 [TBL] [Abstract][Full Text] [Related]
5. Selective Gas-Phase Oxidation and Localization of Alkylated Cysteine Residues in Polypeptide Ions via Ion/Ion Chemistry. Pilo AL; Zhao F; McLuckey SA J Proteome Res; 2016 Sep; 15(9):3139-46. PubMed ID: 27476698 [TBL] [Abstract][Full Text] [Related]
6. Optimization of cysteine residue alkylation using an on-line LC-MS strategy: Benefits of using a cocktail of haloacetamide reagents. Murphy EL; Joy AP; Ouellette RJ; Barnett DA Anal Biochem; 2021 Apr; 619():114137. PubMed ID: 33582115 [TBL] [Abstract][Full Text] [Related]
7. 'Shotgun' proteomic analyses without alkylation of cysteine. Wiśniewski JR; Zettl K; Pilch M; Rysiewicz B; Sadok I Anal Chim Acta; 2020 Mar; 1100():131-137. PubMed ID: 31987133 [TBL] [Abstract][Full Text] [Related]
8. Modification of cysteine residues by alkylation. A tool in peptide mapping and protein identification. Sechi S; Chait BT Anal Chem; 1998 Dec; 70(24):5150-8. PubMed ID: 9868912 [TBL] [Abstract][Full Text] [Related]
9. Essential cysteine-alkylation strategies to monitor structurally altered estrogen receptor as found in oxidant-stressed breast cancers. Meza JE; Scott GK; Benz CC; Baldwin MA Anal Biochem; 2003 Sep; 320(1):21-31. PubMed ID: 12895466 [TBL] [Abstract][Full Text] [Related]
10. Artifacts to avoid while taking advantage of top-down mass spectrometry based detection of protein S-thiolation. Auclair JR; Salisbury JP; Johnson JL; Petsko GA; Ringe D; Bosco DA; Agar NY; Santagata S; Durham HD; Agar JN Proteomics; 2014 May; 14(10):1152-7. PubMed ID: 24634066 [TBL] [Abstract][Full Text] [Related]
11. Surfactant-Induced Artifacts during Proteomic Sample Preparation. Ji Y; Liu M; Bachschmid MM; Costello CE; Lin C Anal Chem; 2015 Jun; 87(11):5500-4. PubMed ID: 25945600 [TBL] [Abstract][Full Text] [Related]
12. A Mass Spectrometry Strategy for Protein Quantification Based on the Differential Alkylation of Cysteines Using Iodoacetamide and Acrylamide. Virág D; Schlosser G; Borbély A; Gellén G; Papp D; Kaleta Z; Dalmadi-Kiss B; Antal I; Ludányi K Int J Mol Sci; 2024 Apr; 25(9):. PubMed ID: 38731875 [TBL] [Abstract][Full Text] [Related]
13. Evaluation and optimization of reduction and alkylation methods to maximize peptide identification with MS-based proteomics. Suttapitugsakul S; Xiao H; Smeekens J; Wu R Mol Biosyst; 2017 Nov; 13(12):2574-2582. PubMed ID: 29019370 [TBL] [Abstract][Full Text] [Related]
14. N-t-butyliodoacetamide and iodoacetanilide: two new cysteine alkylating reagents for relative quantitation of proteins. Pasquarello C; Sanchez JC; Hochstrasser DF; Corthals GL Rapid Commun Mass Spectrom; 2004; 18(1):117-27. PubMed ID: 14689568 [TBL] [Abstract][Full Text] [Related]
15. Identification of consistent alkylation of cysteine-less peptides in a proteomics experiment. Woods AG; Sokolowska I; Darie CC Biochem Biophys Res Commun; 2012 Mar; 419(2):305-8. PubMed ID: 22342715 [TBL] [Abstract][Full Text] [Related]
16. Systematic Evaluation of Protein Reduction and Alkylation Reveals Massive Unspecific Side Effects by Iodine-containing Reagents. Müller T; Winter D Mol Cell Proteomics; 2017 Jul; 16(7):1173-1187. PubMed ID: 28539326 [TBL] [Abstract][Full Text] [Related]
17. Characterizing closely spaced, complex disulfide bond patterns in peptides and proteins by liquid chromatography/electrospray ionization tandem mass spectrometry. Yen TY; Yan H; Macher BA J Mass Spectrom; 2002 Jan; 37(1):15-30. PubMed ID: 11813307 [TBL] [Abstract][Full Text] [Related]
18. Reducing Complexity? Cysteine Reduction and S-Alkylation in Proteomic Workflows: Practical Considerations. Evans CA Methods Mol Biol; 2019; 1977():83-97. PubMed ID: 30980324 [TBL] [Abstract][Full Text] [Related]
19. Characterization of the disulfide bonds and free cysteine residues of the Chlamydia trachomatis mouse pneumonitis major outer membrane protein. Yen TY; Pal S; de la Maza LM Biochemistry; 2005 Apr; 44(16):6250-6. PubMed ID: 15835913 [TBL] [Abstract][Full Text] [Related]
20. Modification of Cysteine. Grant GA Curr Protoc Protein Sci; 2017 Feb; 87():15.1.1-15.1.23. PubMed ID: 28150879 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]