BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 32116308)

  • 1. Rendering SiO2/Si Surfaces Omniphobic by Carving Gas-Entrapping Microtextures Comprising Reentrant and Doubly Reentrant Cavities or Pillars.
    Arunachalam S; Domingues EM; Das R; Nauruzbayeva J; Buttner U; Syed A; Mishra H
    J Vis Exp; 2020 Feb; (156):. PubMed ID: 32116308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Doubly Reentrant Cavities Prevent Catastrophic Wetting Transitions on Intrinsically Wetting Surfaces.
    Domingues EM; Arunachalam S; Mishra H
    ACS Appl Mater Interfaces; 2017 Jun; 9(25):21532-21538. PubMed ID: 28580784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proof-of-Concept for Gas-Entrapping Membranes Derived from Water-Loving SiO2/Si/SiO2 Wafers for Green Desalination.
    Das R; Arunachalam S; Ahmad Z; Manalastas E; Syed A; Buttner U; Mishra H
    J Vis Exp; 2020 Mar; (157):. PubMed ID: 32176215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing omniphobicity by immersion.
    Arunachalam S; Das R; Nauruzbayeva J; Domingues EM; Mishra H
    J Colloid Interface Sci; 2019 Jan; 534():156-162. PubMed ID: 30218988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomimetic Coating-free Superomniphobicity.
    Das R; Ahmad Z; Nauruzbayeva J; Mishra H
    Sci Rep; 2020 May; 10(1):7934. PubMed ID: 32404874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomimetic coating-free surfaces for long-term entrapment of air under wetting liquids.
    Domingues EM; Arunachalam S; Nauruzbayeva J; Mishra H
    Nat Commun; 2018 Sep; 9(1):3606. PubMed ID: 30190456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rates of cavity filling by liquids.
    Seo D; Schrader AM; Chen SY; Kaufman Y; Cristiani TR; Page SH; Koenig PH; Gizaw Y; Lee DW; Israelachvili JN
    Proc Natl Acad Sci U S A; 2018 Aug; 115(32):8070-8075. PubMed ID: 30026197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Turning traditionally nonwetting surfaces wetting for even ultra-high surface energy liquids.
    Wilke KL; Lu Z; Song Y; Wang EN
    Proc Natl Acad Sci U S A; 2022 Jan; 119(4):. PubMed ID: 35064079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repellent surfaces. Turning a surface superrepellent even to completely wetting liquids.
    Liu TL; Kim CJ
    Science; 2014 Nov; 346(6213):1096-100. PubMed ID: 25430765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment.
    Synytska A; Ionov L; Grundke K; Stamm M
    Langmuir; 2009 Mar; 25(5):3132-6. PubMed ID: 19437778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward Condensation-Resistant Omniphobic Surfaces.
    Wilke KL; Preston DJ; Lu Z; Wang EN
    ACS Nano; 2018 Nov; 12(11):11013-11021. PubMed ID: 30299928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible and Robust Superomniphobic Surfaces Created by Localized Photofluidization of Azopolymer Pillars.
    Choi J; Jo W; Lee SY; Jung YS; Kim SH; Kim HT
    ACS Nano; 2017 Aug; 11(8):7821-7828. PubMed ID: 28715178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of highly robust super-liquid-repellent surfaces that can resist high-velocity impact of low-surface-tension liquids.
    Wang Y; Fan Y; Liu H; Wang S; Liu L; Dou Y; Huang S; Li J; Tian X
    Lab Chip; 2024 Mar; 24(6):1658-1667. PubMed ID: 38299611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and High-Resolution Characterization of Silicon Wafer-like Omniphobic Liquid Layers Applicable to Any Substrate.
    Khatir B; Shabanian S; Golovin K
    ACS Appl Mater Interfaces; 2020 Jul; 12(28):31933-31939. PubMed ID: 32497426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of surface geometry, cavitation, and condensation on wetting transitions: posts and reentrant structures.
    Panter JR; Kusumaatmaja H
    J Phys Condens Matter; 2017 Mar; 29(8):084001. PubMed ID: 28092626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Springtail-Inspired Superamphiphobic Ordered Nanohoodoo Arrays with Quasi-Doubly Reentrant Structures.
    Dong S; Zhang X; Li Q; Liu C; Ye T; Liu J; Xu H; Zhang X; Liu J; Jiang C; Xue L; Yang S; Xiao X
    Small; 2020 May; 16(19):e2000779. PubMed ID: 32285646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Smooth, All-Solid, Low-Hysteresis, Omniphobic Surfaces with Enhanced Mechanical Durability.
    Boban M; Golovin K; Tobelmann B; Gupte O; Mabry JM; Tuteja A
    ACS Appl Mater Interfaces; 2018 Apr; 10(14):11406-11413. PubMed ID: 29554432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is a Knowledge of Surface Topology and Contact Angles Enough to Define the Drop Impact Outcome?
    Malavasi I; Veronesi F; Caldarelli A; Zani M; Raimondo M; Marengo M
    Langmuir; 2016 Jun; 32(25):6255-62. PubMed ID: 27228028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contact line pinning on microstructured surfaces for liquids in the Wenzel state.
    Forsberg PS; Priest C; Brinkmann M; Sedev R; Ralston J
    Langmuir; 2010 Jan; 26(2):860-5. PubMed ID: 19702258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-Dependent Wetting Behavior of PDMS Surfaces with Bioinspired, Hierarchical Structures.
    Mishra H; Schrader AM; Lee DW; Gallo A; Chen SY; Kaufman Y; Das S; Israelachvili JN
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):8168-74. PubMed ID: 26709928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.