These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 32116412)

  • 1. Focused Ion Beam-Induced Displacive Phase Transformation From Austenite to Martensite during Fabrication of Quenched and Partitioned Steel Micro-Pillar.
    Seo EJ; Cho L; Kim JK; Mola J; Zhao L; Lee S; De Cooman BC
    J Alloys Compd; 2020; 812():. PubMed ID: 32116412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of FIB-Induced Phase Transformation in Austenitic Steel.
    Michael JR; Giannuzzi LA; Burke MG; Zhong XL
    Microsc Microanal; 2022 Feb; 28(1):70-82. PubMed ID: 34839848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microstructure Evolution at Ni/Fe Interface in Dissimilar Metal Weld between Ferritic Steel and Austenitic Stainless Steel.
    Li X; Nie J; Wang X; Li K; Zhang H
    Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deformation behavior of duplex austenite and
    Kwon KH; Suh BC; Baik SI; Kim YW; Choi JK; Kim NJ
    Sci Technol Adv Mater; 2013 Feb; 14(1):014204. PubMed ID: 27877552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stability of retained austenite in high carbon steel under compressive stress: an investigation from macro to nano scale.
    Hossain R; Pahlevani F; Quadir MZ; Sahajwalla V
    Sci Rep; 2016 Oct; 6():34958. PubMed ID: 27725722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic scale investigation of non-equilibrium segregation of boron in a quenched Mo-free martensitic steel.
    Li YJ; Ponge D; Choi P; Raabe D
    Ultramicroscopy; 2015 Dec; 159 Pt 2():240-7. PubMed ID: 25801276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of the Microstructural Evolution of 18Cr2Ni4WA Steel during Vacuum Low-Pressure Carburizing Heat Treatment and Its Effect on Case Hardness.
    Wang B; He Y; Liu Y; Tian Y; You J; Wang Z; Wang G
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32443773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Reverse-phase Transformation Annealing Process on Microstructure and Mechanical Properties of Medium Manganese Steel.
    Zhao Y; Fan L; Lu B
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30200617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stress-induced detwinning and martensite transformation in an austenite Ni-Mn-Ga alloy with martensite cluster under uniaxial loading.
    Hou L; Niu Y; Dai Y; Ba L; Fautrelle Y; Li Z; Yang B; Esling C; Li X
    IUCrJ; 2019 May; 6(Pt 3):366-372. PubMed ID: 31098018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of low-temperature nitriding on the strain-induced martensite and laser-quenched austenite in a magnetic encoder made from 304L stainless steel.
    Leskovšek V; Godec M; Kogej P
    Sci Rep; 2016 Aug; 6():30979. PubMed ID: 27492862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical Behavior of Multi-Phase Steels Comprising Retained Austenite.
    Perdahcıoğlu ES; Geijselaers HJM
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth and martensitic transformation of ferromagnetic Co-Cr-Ga-Si epitaxial films.
    Ge Y; Lünser K; Ganss F; Gaal P; Fink L; Fähler S
    Sci Technol Adv Mater; 2023; 24(1):2251368. PubMed ID: 37705532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Cu on the Formation of Reversed Austenite in Super Martensitic Stainless Steel.
    Jiang W; Zhao K
    Materials (Basel); 2023 Feb; 16(3):. PubMed ID: 36770308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of Carbon on the Microstructure Evolution and Hardness of Fe-13Cr-xC (x = 0-0.7 wt.%) Stainless Steel.
    Harwarth M; Brauer A; Huang Q; Pourabdoli M; Mola J
    Materials (Basel); 2021 Sep; 14(17):. PubMed ID: 34501153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined nano-SIMS/AFM/EBSD analysis and atom probe tomography, of carbon distribution in austenite/ε-martensite high-Mn steels.
    Seol JB; Lee BH; Choi P; Lee SG; Park CG
    Ultramicroscopy; 2013 Sep; 132():248-57. PubMed ID: 23537886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Giant direct and inverse magnetocaloric effect linked to the same forward martensitic transformation.
    Pérez-Landazábal JI; Recarte V; Sánchez-Alarcos V; Beato-López JJ; Rodríguez-Velamazán JA; Sánchez-Marcos J; Gómez-Polo C; Cesari E
    Sci Rep; 2017 Oct; 7(1):13328. PubMed ID: 29042659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of in situ observation technique using scanning ion microscopy and demonstration of Mn depletion effect on intragranular ferrite transformation in low-alloy steel.
    Shigesato G; Sugiyama M
    J Electron Microsc (Tokyo); 2002; 51(6):359-67. PubMed ID: 12630779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Situ Observation of the Grain Growth Behavior and Martensitic Transformation of Supercooled Austenite in NM500 Wear-Resistant Steel at Different Quenching Temperatures.
    Li Z; Yuan Q; Xu S; Zhou Y; Liu S; Xu G
    Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probabilistic Reconstruction of Austenite Microstructure from Electron Backscatter Diffraction Observations of Martensite.
    Brust A; Payton E; Hobbs T; Sinha V; Yardley V; Niezgoda S
    Microsc Microanal; 2021 Sep; ():1-21. PubMed ID: 34468305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of Parent Austenite Grains from Martensite Structure Using EBSD in a Wear Resistant Steel.
    Gyhlesten Back J; Engberg G
    Materials (Basel); 2017 Apr; 10(5):. PubMed ID: 28772813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.