BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 32116644)

  • 1. Electrophile Signaling and Emerging Immuno- and Neuro-modulatory Electrophilic Pharmaceuticals.
    Poganik JR; Aye Y
    Front Aging Neurosci; 2020; 12():1. PubMed ID: 32116644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systems analysis of protein modification and cellular responses induced by electrophile stress.
    Jacobs AT; Marnett LJ
    Acc Chem Res; 2010 May; 43(5):673-83. PubMed ID: 20218676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substoichiometric hydroxynonenylation of a single protein recapitulates whole-cell-stimulated antioxidant response.
    Parvez S; Fu Y; Li J; Long MJ; Lin HY; Lee DK; Hu GS; Aye Y
    J Am Chem Soc; 2015 Jan; 137(1):10-3. PubMed ID: 25544059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel approaches to identify protein adducts produced by lipid peroxidation.
    Codreanu SG; Liebler DC
    Free Radic Res; 2015; 49(7):881-7. PubMed ID: 25819163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemoproteomic profiling of protein modifications by lipid-derived electrophiles.
    Chen Y; Qin W; Wang C
    Curr Opin Chem Biol; 2016 Feb; 30():37-45. PubMed ID: 26625013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Live-cell imaging reveals impaired detoxification of lipid-derived electrophiles is a hallmark of ferroptosis.
    Van Kessel ATM; Karimi R; Cosa G
    Chem Sci; 2022 Aug; 13(33):9727-9738. PubMed ID: 36091918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Oculus to Profile and Probe Target Engagement In Vivo: How T-REX Was Born and Its Evolution into G-REX.
    Long MJC; Rogg C; Aye Y
    Acc Chem Res; 2021 Feb; 54(3):618-631. PubMed ID: 33228351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sample preparation approaches for qualitative and quantitative analysis of lipid-derived electrophile modified proteomes by mass spectrometry.
    Yuan W; Wang J; Zhang Y; Lu H
    Mol Omics; 2020 Dec; 16(6):511-520. PubMed ID: 33079115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomics and Beyond: Cell Decision-Making Shaped by Reactive Electrophiles.
    Liu X; Long MJC; Aye Y
    Trends Biochem Sci; 2019 Jan; 44(1):75-89. PubMed ID: 30327250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of electrophile-sensitive proteins.
    Wall SB; Smith MR; Ricart K; Zhou F; Vayalil PK; Oh JY; Landar A
    Biochim Biophys Acta; 2014 Feb; 1840(2):913-22. PubMed ID: 24021887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemoproteomic profiling of targets of lipid-derived electrophiles by bioorthogonal aminooxy probe.
    Chen Y; Cong Y; Quan B; Lan T; Chu X; Ye Z; Hou X; Wang C
    Redox Biol; 2017 Aug; 12():712-718. PubMed ID: 28411555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. redox Signaling by 8-nitro-cyclic guanosine monophosphate: nitric oxide- and reactive oxygen species-derived electrophilic messenger.
    Fujii S; Akaike T
    Antioxid Redox Signal; 2013 Oct; 19(11):1236-46. PubMed ID: 23157314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of dimethyl fumarate in oxidative stress of multiple sclerosis: A review.
    Suneetha A; Raja Rajeswari K
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Apr; 1019():15-20. PubMed ID: 26899449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical-proteomic strategies to investigate cysteine posttranslational modifications.
    Couvertier SM; Zhou Y; Weerapana E
    Biochim Biophys Acta; 2014 Dec; 1844(12):2315-30. PubMed ID: 25291386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox regulation of antioxidants, autophagy, and the response to stress: implications for electrophile therapeutics.
    Levonen AL; Hill BG; Kansanen E; Zhang J; Darley-Usmar VM
    Free Radic Biol Med; 2014 Jun; 71():196-207. PubMed ID: 24681256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbonyl scavengers as pharmacotherapies in degenerative disease: Hydralazine repurposing and challenges in clinical translation.
    Burcham PC
    Biochem Pharmacol; 2018 Aug; 154():397-406. PubMed ID: 29883705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophiles Against (Skin) Diseases: More Than Nrf2.
    Hennig P; Fenini G; Di Filippo M; Beer HD
    Biomolecules; 2020 Feb; 10(2):. PubMed ID: 32053878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of proteins adducted by lipid peroxidation products in plasma and modifications of apolipoprotein A1 with a novel biotinylated phospholipid probe.
    Szapacs ME; Kim HY; Porter NA; Liebler DC
    J Proteome Res; 2008 Oct; 7(10):4237-46. PubMed ID: 18778096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dimethyl Fumarate Protects Neural Stem/Progenitor Cells and Neurons from Oxidative Damage through Nrf2-ERK1/2 MAPK Pathway.
    Wang Q; Chuikov S; Taitano S; Wu Q; Rastogi A; Tuck SJ; Corey JM; Lundy SK; Mao-Draayer Y
    Int J Mol Sci; 2015 Jun; 16(6):13885-907. PubMed ID: 26090715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances in understanding NRF2 as a druggable target: development of pro-electrophilic and non-covalent NRF2 activators to overcome systemic side effects of electrophilic drugs like dimethyl fumarate.
    Satoh T; Lipton S
    F1000Res; 2017; 6():2138. PubMed ID: 29263788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.