BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 32117078)

  • 1. Pyrite-Based Cr(VI) Reduction Driven by Chemoautotrophic Acidophilic Bacteria.
    Liu X; Wu H; Gan M; Qiu G
    Front Microbiol; 2019; 10():3082. PubMed ID: 32117078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergistic effect between sulfide mineral and acidophilic bacteria significantly promoted Cr(VI) reduction.
    Gan M; Li J; Sun S; Ding J; Zhu J; Liu X; Qiu G
    J Environ Manage; 2018 Aug; 219():84-94. PubMed ID: 29730593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hexavalent chromium remediation based on the synergistic effect between chemoautotrophic bacteria and sulfide minerals.
    Gan M; Gu C; Ding J; Zhu J; Liu X; Qiu G
    Ecotoxicol Environ Saf; 2019 May; 173():118-130. PubMed ID: 30771655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of pyrite, pyrrhotite, and chalcopyrite dissolution by Acidithiobacillus ferrooxidans.
    Kocaman AT; Cemek M; Edwards KJ
    Can J Microbiol; 2016 Aug; 62(8):629-42. PubMed ID: 27332502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cr(VI)-contaminated groundwater remediation with simulated permeable reactive barrier (PRB) filled with natural pyrite as reactive material: Environmental factors and effectiveness.
    Liu Y; Mou H; Chen L; Mirza ZA; Liu L
    J Hazard Mater; 2015 Nov; 298():83-90. PubMed ID: 26026959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immobilization of hexavalent chromium in soil and groundwater using synthetic pyrite particles.
    Wang T; Qian T; Huo L; Li Y; Zhao D
    Environ Pollut; 2019 Dec; 255(Pt 1):112992. PubMed ID: 31541830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active destruction of pyrite passivation by ozone oxidation of a biotic leaching system.
    Lv X; Zhao H; Zhang Y; Yan Z; Zhao Y; Zheng H; Liu W; Xie J; Qiu G
    Chemosphere; 2021 Aug; 277():130335. PubMed ID: 33780674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of Cr(VI) reduction by indigenous bacterial consortia using natural pyrite: A detailed study to elucidate the mechanisms involved in the highly efficient and possible sustainable system.
    Zhang K; Zhu Z; Peng M; Tian L; Chen Y; Zhu J; Gan M
    Chemosphere; 2022 Dec; 308(Pt 1):136228. PubMed ID: 36041522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyrite oxidation by hexavalent chromium: investigation of the chemical processes by monitoring of aqueous metal species.
    Demoisson F; Mullet M; Humbert B
    Environ Sci Technol; 2005 Nov; 39(22):8747-52. PubMed ID: 16323772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly efficient removal of Cr(VI) by hexapod-like pyrite nanosheet clusters.
    Nie X; Li G; Wang Y; Luo Y; Song L; Yang S; Wan Q
    J Hazard Mater; 2022 Feb; 424(Pt B):127504. PubMed ID: 34678566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined effect of silver ion and pyrite on AMD formation generated by chalcopyrite bio-dissolution.
    Liao R; Yang B; Huang X; Hong M; Yu S; Liu S; Wang J; Qiu G
    Chemosphere; 2021 Sep; 279():130516. PubMed ID: 33878694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbially Influenced Corrosion of Stainless Steel by Acidithiobacillus ferrooxidans Supplemented with Pyrite: Importance of Thiosulfate.
    Inaba Y; Xu S; Vardner JT; West AC; Banta S
    Appl Environ Microbiol; 2019 Nov; 85(21):. PubMed ID: 31444204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of low molecular weight organic acids on pyrite dissolution in aqueous systems: implications for catalytic chromium (VI) treatment.
    Kantar C
    Water Sci Technol; 2016; 74(1):99-109. PubMed ID: 27386987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of initial pH, operating temperature, and dissolved oxygen concentrations on performance of pyrite-fuel cells in the presence of Acidithiobacillus ferrooxidans.
    Ju WJ; Jho EH; Nam K
    J Hazard Mater; 2018 Oct; 360():512-519. PubMed ID: 30144770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scanning force microscopy studies of the colonization and growth of A. ferrooxidans on the surface of pyrite minerals.
    Pace DL; Mielke RE; Southam G; Porter TL
    Scanning; 2005; 27(3):136-40. PubMed ID: 15934505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactive oxygen species formation driven by acidophiles mediated pyrite oxidation and its potential role on 2,4-dichlorophenol transformation.
    Zhou S; Tong G; Meng X; Wang Y; Gu G; Gan M
    J Hazard Mater; 2022 Mar; 425():127833. PubMed ID: 34872039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manipulation of pyrite colonization and leaching by iron-oxidizing Acidithiobacillus species.
    Bellenberg S; Barthen R; Boretska M; Zhang R; Sand W; Vera M
    Appl Microbiol Biotechnol; 2015 Feb; 99(3):1435-49. PubMed ID: 25381488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biooxidation of pyrite by defined mixed cultures of moderately thermophilic acidophiles in pH-controlled bioreactors: significance of microbial interactions.
    Okibe N; Johnson DB
    Biotechnol Bioeng; 2004 Sep; 87(5):574-83. PubMed ID: 15352055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can Sulfate Be the First Dominant Aqueous Sulfur Species Formed in the Oxidation of Pyrite by
    Borilova S; Mandl M; Zeman J; Kucera J; Pakostova E; Janiczek O; Tuovinen OH
    Front Microbiol; 2018; 9():3134. PubMed ID: 30619202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and characterization of Acidithiobacillus ferrooxidans YY2 and its application in the biodesulfurization of coal.
    Yang X; Wang S; Liu Y; Zhang Y
    Can J Microbiol; 2015 Jan; 61(1):65-71. PubMed ID: 25496139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.