These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 32117087)

  • 1. Genomic Insights Into Sugar Adaptation in an Extremophile Yeast
    Guo H; Qiu Y; Wei J; Niu C; Zhang Y; Yuan Y; Yue T
    Front Microbiol; 2019; 10():3157. PubMed ID: 32117087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive response and tolerance to sugar and salt stress in the food yeast Zygosaccharomyces rouxii.
    Dakal TC; Solieri L; Giudici P
    Int J Food Microbiol; 2014 Aug; 185():140-57. PubMed ID: 24973621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential analysis of ergosterol function in response to high salt and sugar stress in Zygosaccharomyces rouxii.
    Song N; Xia H; Yang Q; Zhang X; Yao L; Yang S; Chen X; Dai J
    FEMS Yeast Res; 2022 Sep; 22(1):. PubMed ID: 35932192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological and transcriptomic insights into sugar stress resistance in osmophilic yeast Zygosaccharomyces rouxii.
    Wang H; Tang J; Lv J; Wang X; Sun H
    Food Microbiol; 2024 Feb; 117():104395. PubMed ID: 37919004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The osmotolerant fructophilic yeast Zygosaccharomyces rouxii employs two plasma-membrane fructose uptake systems belonging to a new family of yeast sugar transporters.
    Leandro MJ; Sychrová H; Prista C; Loureiro-Dias MC
    Microbiology (Reading); 2011 Feb; 157(Pt 2):601-608. PubMed ID: 21051487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein abundance changes of Zygosaccharomyces rouxii in different sugar concentrations.
    Guo H; Niu C; Liu B; Wei J; Wang H; Yuan Y; Yue T
    Int J Food Microbiol; 2016 Sep; 233():44-51. PubMed ID: 27322723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potassium supply and homeostasis in the osmotolerant non-conventional yeasts Zygosaccharomyces rouxii differ from Saccharomyces cerevisiae.
    Stříbný J; Kinclová-Zimmermannová O; Sychrová H
    Curr Genet; 2012 Dec; 58(5-6):255-64. PubMed ID: 22948499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osmoresistant yeast Zygosaccharomyces rouxii: the two most studied wild-type strains (ATCC 2623 and ATCC 42981) differ in osmotolerance and glycerol metabolism.
    Pribylova L; de Montigny J; Sychrova H
    Yeast; 2007 Mar; 24(3):171-80. PubMed ID: 17351908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of salt-induced genes of Zygosaccharomyces rouxii by using Saccharomyces cerevisiae GeneFilters.
    Schoondermark-Stolk SA; ter Schure EG; Verrips CT; Verkleij AJ; Boonstra J
    FEMS Yeast Res; 2002 Dec; 2(4):525-32. PubMed ID: 12702268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological characterization of spoilage strains of Zygosaccharomyces bailii and Zygosaccharomyces rouxii isolated from high sugar environments.
    Martorell P; Stratford M; Steels H; Fernández-Espinar MT; Querol A
    Int J Food Microbiol; 2007 Mar; 114(2):234-42. PubMed ID: 17239464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incidence of osmophilic yeasts and Zygosaccharomyces rouxii during the production of concentrate grape juices.
    Rojo MC; Torres Palazzolo C; Cuello R; González M; Guevara F; Ponsone ML; Mercado LA; Martínez C; Combina M
    Food Microbiol; 2017 Jun; 64():7-14. PubMed ID: 28213037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two putative MAP kinase genes, ZrHOG1 and ZrHOG2, cloned from the salt-tolerant yeast Zygosaccharomyces rouxii are functionally homologous to the Saccharomyces cerevisiae HOG1 gene.
    Iwaki T; Tamai Y; Watanabe Y
    Microbiology (Reading); 1999 Jan; 145 ( Pt 1)():241-248. PubMed ID: 10206704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new understanding: Gene expression, cell characteristic and antioxidant enzymes of Zygosaccharomyces rouxii under the D-fructose regulation.
    Liu H; Dai L; Wang F; Li X; Liu W; Pan B; Wang C; Zhang D; Deng J; Li Z
    Enzyme Microb Technol; 2020 Jan; 132():109409. PubMed ID: 31731962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zygosaccharomyces rouxii Trk1 is an efficient potassium transporter providing yeast cells with high lithium tolerance.
    Zimmermannova O; Salazar A; Sychrova H; Ramos J
    FEMS Yeast Res; 2015 Jun; 15(4):fov029. PubMed ID: 26019147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential hypersaline stress response in Zygosaccharomyces rouxii complex yeasts: a physiological and transcriptional study.
    Solieri L; Vezzani V; Cassanelli S; Dakal TC; Pazzini J; Giudici P
    FEMS Yeast Res; 2016 Sep; 16(6):. PubMed ID: 27493145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a second gene (ZSOD22) of Na+/H+ antiporter from salt-tolerant yeast Zygosaccharomyces rouxii and functional expression of ZSOD2 and ZSOD22 in Saccharomyces cerevisiae.
    Iwaki T; Higashida Y; Tsuji H; Tamai Y; Watanabe Y
    Yeast; 1998 Sep; 14(13):1167-74. PubMed ID: 9791888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of Zygosaccharomyces rouxii and Candida tropicalis in a High-Sugar Medium by a Metal Oxide Sensor-Based Electronic Nose and Comparison with Test Panel Evaluation.
    Wang H; Hu Z; Long F; Guo C; Yuan Y; Yue T
    J Food Prot; 2015 Nov; 78(11):2052-63. PubMed ID: 26555529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osmotolerant yeast species differ in basic physiological parameters and in tolerance of non-osmotic stresses.
    Bubnová M; Zemančíková J; Sychrová H
    Yeast; 2014 Aug; 31(8):309-21. PubMed ID: 24962688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptation of the osmotolerant yeast Zygosaccharomyces rouxii to an osmotic environment through copy number amplification of FLO11D.
    Watanabe J; Uehara K; Mogi Y
    Genetics; 2013 Oct; 195(2):393-405. PubMed ID: 23893487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of co-culture with Tetragenococcus halophilus on the physiological characterization and transcription profiling of Zygosaccharomyces rouxii.
    Yao S; Zhou R; Jin Y; Huang J; Wu C
    Food Res Int; 2019 Jul; 121():348-358. PubMed ID: 31108757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.