BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

723 related articles for article (PubMed ID: 32117228)

  • 1. Functional Inhibition of Host Histone Deacetylases (HDACs) Enhances
    Moreira JD; Koch BEV; van Veen S; Walburg KV; Vrieling F; Mara Pinto Dabés Guimarães T; Meijer AH; Spaink HP; Ottenhoff THM; Haks MC; Heemskerk MT
    Front Immunol; 2020; 11():36. PubMed ID: 32117228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrative Analysis of Human Macrophage Inflammatory Response Related to
    Bade P; Simonetti F; Sans S; Laboudie P; Kissane K; Chappat N; Lagrange S; Apparailly F; Roubert C; Duroux-Richard I
    Front Immunol; 2021; 12():668060. PubMed ID: 34276658
    [No Abstract]   [Full Text] [Related]  

  • 3. A mycobacterial phosphoribosyltransferase promotes bacillary survival by inhibiting oxidative stress and autophagy pathways in macrophages and zebrafish.
    Mohanty S; Jagannathan L; Ganguli G; Padhi A; Roy D; Alaridah N; Saha P; Nongthomba U; Godaly G; Gopal RK; Banerjee S; Sonawane A
    J Biol Chem; 2015 May; 290(21):13321-43. PubMed ID: 25825498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HDAC3 inhibitor RGFP966 controls bacterial growth and modulates macrophage signaling during Mycobacterium tuberculosis infection.
    Campo M; Heater S; Peterson GJ; Simmons JD; Skerrett SJ; Mayanja-Kizza H; Stein CM; Boom WH; Hawn TR
    Tuberculosis (Edinb); 2021 Mar; 127():102062. PubMed ID: 33639591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infection and RNA-seq analysis of a zebrafish tlr2 mutant shows a broad function of this toll-like receptor in transcriptional and metabolic control and defense to Mycobacterium marinum infection.
    Hu W; Yang S; Shimada Y; Münch M; Marín-Juez R; Meijer AH; Spaink HP
    BMC Genomics; 2019 Nov; 20(1):878. PubMed ID: 31747871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repurposing Tamoxifen as Potential Host-Directed Therapeutic for Tuberculosis.
    Boland R; Heemskerk MT; Forn-Cuní G; Korbee CJ; Walburg KV; Esselink JJ; Carvalho Dos Santos C; de Waal AM; van der Hoeven DCM; van der Sar E; de Ries AS; Xie J; Spaink HP; van der Vaart M; Haks MC; Meijer AH; Ottenhoff THM
    mBio; 2023 Feb; 14(1):e0302422. PubMed ID: 36475748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potentiation of P2RX7 as a host-directed strategy for control of mycobacterial infection.
    Matty MA; Knudsen DR; Walton EM; Beerman RW; Cronan MR; Pyle CJ; Hernandez RE; Tobin DM
    Elife; 2019 Jan; 8():. PubMed ID: 30693866
    [No Abstract]   [Full Text] [Related]  

  • 8. Evaluation of in silico designed inhibitors targeting MelF (Rv1936) against Mycobacterium marinum within macrophages.
    Dharra R; Radhakrishnan VS; Prasad T; Thakur Z; Cirillo JD; Sheoran A; Pandey AK; Kulharia M; Mehta PK
    Sci Rep; 2019 Jul; 9(1):10084. PubMed ID: 31300732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sirtuin 7 Regulates Nitric Oxide Production and Apoptosis to Promote Mycobacterial Clearance in Macrophages.
    Zhang S; Liu Y; Zhou X; Ou M; Xiao G; Li F; Wang Z; Wang Z; Liu L; Zhang G
    Front Immunol; 2021; 12():779235. PubMed ID: 34925356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcription Repressor Protein ZBTB25 Associates with HDAC1-Sin3a Complex in Mycobacterium tuberculosis-Infected Macrophages, and Its Inhibition Clears Pathogen by Autophagy.
    Madhavan A; Arun KB; Pushparajan AR; Balaji M; Kumar RA
    mSphere; 2021 Feb; 6(1):. PubMed ID: 33627504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New approaches to tuberculosis--novel drugs based on drug targets related to toll-like receptors in macrophages.
    Tomioka H
    Curr Pharm Des; 2014; 20(27):4404-17. PubMed ID: 24245765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pasakbumin A controls the growth of Mycobacterium tuberculosis by enhancing the autophagy and production of antibacterial mediators in mouse macrophages.
    Lee HJ; Ko HJ; Kim SH; Jung YJ
    PLoS One; 2019; 14(3):e0199799. PubMed ID: 30865638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Priming of innate antimycobacterial immunity by heat-killed
    Luukinen H; Hammarén MM; Vanha-Aho LM; Svorjova A; Kantanen L; Järvinen S; Luukinen BV; Dufour E; Rämet M; Hytönen VP; Parikka M
    Dis Model Mech; 2018 Jan; 11(1):. PubMed ID: 29208761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thrombocyte Inhibition Restores Protective Immunity to Mycobacterial Infection in Zebrafish.
    Hortle E; Johnson KE; Johansen MD; Nguyen T; Shavit JA; Britton WJ; Tobin DM; Oehlers SH
    J Infect Dis; 2019 Jul; 220(3):524-534. PubMed ID: 30877311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The C-Type Lectin Receptor DC-SIGN Has an Anti-Inflammatory Role in Human M(IL-4) Macrophages in Response to
    Lugo-Villarino G; Troegeler A; Balboa L; Lastrucci C; Duval C; Mercier I; Bénard A; Capilla F; Al Saati T; Poincloux R; Kondova I; Verreck FAW; Cougoule C; Maridonneau-Parini I; Sasiain MDC; Neyrolles O
    Front Immunol; 2018; 9():1123. PubMed ID: 29946317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mycobacterium tuberculosis infection induces IL-10 gene expression by disturbing histone deacetylase 6 and histonedeacetylase 11 equilibrium in macrophages.
    Wang X; Wu Y; Jiao J; Huang Q
    Tuberculosis (Edinb); 2018 Jan; 108():118-123. PubMed ID: 29523311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Over-expression of Tgs1 in Mycobacterium marinum enhances virulence in adult zebrafish.
    Liu DQ; Zhang JL; Pan ZF; Mai JT; Mei HJ; Dai Y; Zhang L; Wang QZ
    Int J Med Microbiol; 2020 Jan; 310(1):151378. PubMed ID: 31757695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The cyclic nitroxide antioxidant 4-methoxy-TEMPO decreases mycobacterial burden in vivo through host and bacterial targets.
    Black HD; Xu W; Hortle E; Robertson SI; Britton WJ; Kaur A; New EJ; Witting PK; Chami B; Oehlers SH
    Free Radic Biol Med; 2019 May; 135():157-166. PubMed ID: 30878645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of Fatty Acid Oxidation Promotes Macrophage Control of Mycobacterium tuberculosis.
    Chandra P; He L; Zimmerman M; Yang G; Köster S; Ouimet M; Wang H; Moore KJ; Dartois V; Schilling JD; Philips JA
    mBio; 2020 Jul; 11(4):. PubMed ID: 32636249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Editorial: Current status and perspective on drug targets in tubercle bacilli and drug design of antituberculous agents based on structure-activity relationship.
    Tomioka H
    Curr Pharm Des; 2014; 20(27):4305-6. PubMed ID: 24245755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.