These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 32117352)
1. Estimation of Vertical Leaf Nitrogen Distribution Within a Rice Canopy Based on Hyperspectral Data. He J; Zhang X; Guo W; Pan Y; Yao X; Cheng T; Zhu Y; Cao W; Tian Y Front Plant Sci; 2019; 10():1802. PubMed ID: 32117352 [TBL] [Abstract][Full Text] [Related]
2. Monitoring of Nitrogen Concentration in Soybean Leaves at Multiple Spatial Vertical Scales Based on Spectral Parameters. Sun T; Li Z; Wang Z; Liu Y; Zhu Z; Zhao Y; Xie W; Cui S; Chen G; Yang W; Zhang Z; Zhang F Plants (Basel); 2024 Jan; 13(1):. PubMed ID: 38202447 [TBL] [Abstract][Full Text] [Related]
3. [Monitoring leaf nitrogen concentration and nitrogen accumulation of double cropping rice based on crop growth monitoring and diagnosis apparatus]. Li YD; Ye C; Cao ZS; Sun BF; Shu SF; Huang JB; Tian YC; He Y Ying Yong Sheng Tai Xue Bao; 2020 Sep; 31(9):3040-3050. PubMed ID: 33345505 [TBL] [Abstract][Full Text] [Related]
4. Estimation of Dynamic Canopy Variables Using Hyperspectral Derived Vegetation Indices Under Varying N Rates at Diverse Phenological Stages of Rice. Din M; Ming J; Hussain S; Ata-Ul-Karim ST; Rashid M; Tahir MN; Hua S; Wang S Front Plant Sci; 2018; 9():1883. PubMed ID: 30697219 [TBL] [Abstract][Full Text] [Related]
5. Assessing the Impact of Spatial Resolution on the Estimation of Leaf Nitrogen Concentration Over the Full Season of Paddy Rice Using Near-Surface Imaging Spectroscopy Data. Zhou K; Cheng T; Zhu Y; Cao W; Ustin SL; Zheng H; Yao X; Tian Y Front Plant Sci; 2018; 9():964. PubMed ID: 30026750 [TBL] [Abstract][Full Text] [Related]
6. Off-Nadir Hyperspectral Sensing for Estimation of Vertical Profile of Leaf Chlorophyll Content within Wheat Canopies. Kong W; Huang W; Casa R; Zhou X; Ye H; Dong Y Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29168757 [TBL] [Abstract][Full Text] [Related]
7. [Quantitative relationships between leaf total nitrogen concentration and canopy reflectance spectra of rice]. Zhou DQ; Tian YC; Yao X; Zhu Y; Cao WX Ying Yong Sheng Tai Xue Bao; 2008 Feb; 19(2):337-44. PubMed ID: 18464640 [TBL] [Abstract][Full Text] [Related]
8. Potential of spectral ratio indices derived from hyperspectral LiDAR and laser-induced chlorophyll fluorescence spectra on estimating rice leaf nitrogen contents. Du L; Shi S; Yang J; Wang W; Sun J; Cheng B; Zhang Z; Gong W Opt Express; 2017 Mar; 25(6):6539-6549. PubMed ID: 28381001 [TBL] [Abstract][Full Text] [Related]
9. Prediction of vertical distribution of SPAD values within maize canopy based on unmanned aerial vehicles multispectral imagery. Chen B; Huang G; Lu X; Gu S; Wen W; Wang G; Chang W; Guo X; Zhao C Front Plant Sci; 2023; 14():1253536. PubMed ID: 38192698 [TBL] [Abstract][Full Text] [Related]
10. Potential of vegetation indices combined with laser-induced fluorescence parameters for monitoring leaf nitrogen content in paddy rice. Yang J; Du L; Gong W; Shi S; Sun J; Chen B PLoS One; 2018; 13(1):e0191068. PubMed ID: 29342190 [TBL] [Abstract][Full Text] [Related]
11. Estimation of a New Canopy Structure Parameter for Rice Using Smartphone Photography. Yu Z; Ustin SL; Zhang Z; Liu H; Zhang X; Meng X; Cui Y; Guan H Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32707649 [TBL] [Abstract][Full Text] [Related]
12. [Estimating Winter Wheat Nitrogen Vertical Distribution Based on Bidirectional Canopy Reflected Spectrum]. Yang SY; Huang WJ; Liang D; Uang LS; Yang GJ; Zhang GJ; Cai SH Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jul; 35(7):1956-60. PubMed ID: 26717759 [TBL] [Abstract][Full Text] [Related]
13. Improving the estimation of rice above-ground biomass based on spatio-temporal UAV imagery and phenological stages. Dai Y; Yu S; Ma T; Ding J; Chen K; Zeng G; Xie A; He P; Peng S; Zhang M Front Plant Sci; 2024; 15():1328834. PubMed ID: 38774220 [TBL] [Abstract][Full Text] [Related]
14. Research on Estimating Rice Canopy Height and LAI Based on LiDAR Data. Jing L; Wei X; Song Q; Wang F Sensors (Basel); 2023 Oct; 23(19):. PubMed ID: 37837163 [TBL] [Abstract][Full Text] [Related]
15. Estimation of Leaf Nitrogen Content in Wheat Based on Fusion of Spectral Features and Deep Features from Near Infrared Hyperspectral Imagery. Yang B; Ma J; Yao X; Cao W; Zhu Y Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33477350 [TBL] [Abstract][Full Text] [Related]
16. Inversion of Nitrogen Concentration in Apple Canopy Based on UAV Hyperspectral Images. Li W; Zhu X; Yu X; Li M; Tang X; Zhang J; Xue Y; Zhang C; Jiang Y Sensors (Basel); 2022 May; 22(9):. PubMed ID: 35591193 [TBL] [Abstract][Full Text] [Related]
17. Identification of High Nitrogen Use Efficiency Phenotype in Rice ( Liang T; Duan B; Luo X; Ma Y; Yuan Z; Zhu R; Peng Y; Gong Y; Fang S; Wu X Front Plant Sci; 2021; 12():740414. PubMed ID: 34925396 [TBL] [Abstract][Full Text] [Related]
18. A three-dimensional canopy photosynthesis model in rice with a complete description of the canopy architecture, leaf physiology, and mechanical properties. Chang TG; Zhao H; Wang N; Song QF; Xiao Y; Qu M; Zhu XG J Exp Bot; 2019 Apr; 70(9):2479-2490. PubMed ID: 30801123 [TBL] [Abstract][Full Text] [Related]
19. Analyzing the performance of the first-derivative fluorescence spectrum for estimating leaf nitrogen concentration. Yang J; Du L; Gong W; Shi S; Sun J; Chen B Opt Express; 2019 Feb; 27(4):3978-3990. PubMed ID: 30876021 [TBL] [Abstract][Full Text] [Related]
20. [Quantitative relationships between satellite channels-based spectral parameters and wheat canopy leaf nitrogen status]. Yao X; Liu XJ; Tian YC; Cao WX; Zhu Y; Zhang Y Ying Yong Sheng Tai Xue Bao; 2013 Feb; 24(2):431-7. PubMed ID: 23705388 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]