These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 32117353)

  • 21. Comparative spatiotemporal analysis of root aerenchyma formation processes in maize due to sulphate, nitrate or phosphate deprivation.
    Siyiannis VF; Protonotarios VE; Zechmann B; Chorianopoulou SN; Müller M; Hawkesford MJ; Bouranis DL
    Protoplasma; 2012 Jul; 249(3):671-86. PubMed ID: 21870204
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Flooding tolerance of Carex species in relation to field distribution and aerenchyma formation.
    Visser EJW; Bögemann GM; VAN DE Steeg HM; Pierik R; Blom CWPM
    New Phytol; 2000 Oct; 148(1):93-103. PubMed ID: 33863031
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preformed aerenchyma determines the differential tolerance response under partial submergence imposed by fresh and saline water flooding in rice.
    Chakraborty K; Ray S; Vijayan J; Molla KA; Nagar R; Jena P; Mondal S; Panda BB; Shaw BP; Swain P; Chattopadhyay K; Sarkar RK
    Physiol Plant; 2021 Dec; 173(4):1597-1615. PubMed ID: 34431099
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Roles of auxin and ethylene in aerenchyma formation in sugarcane roots.
    Tavares EQP; Grandis A; Lembke CG; Souza GM; Purgatto E; De Souza AP; Buckeridge MS
    Plant Signal Behav; 2018 Mar; 13(3):e1422464. PubMed ID: 29286887
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Climate-smart crops: key root anatomical traits that confer flooding tolerance.
    Yamauchi T; Noshita K; Tsutsumi N
    Breed Sci; 2021 Feb; 71(1):51-61. PubMed ID: 33762876
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Contrasting development of lysigenous aerenchyma in two rice genotypes under phosphorus deficiency.
    Pujol V; Wissuwa M
    BMC Res Notes; 2018 Jan; 11(1):60. PubMed ID: 29357942
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Process of aerenchyma formation and reactive oxygen species induced by waterlogging in wheat seminal roots.
    Xu QT; Yang L; Zhou ZQ; Mei FZ; Qu LH; Zhou GS
    Planta; 2013 Nov; 238(5):969-82. PubMed ID: 23975011
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pectins esterification in the apoplast of aluminum-treated pea root nodules.
    Sujkowska-Rybkowska M; Borucki W
    J Plant Physiol; 2015 Jul; 184():1-7. PubMed ID: 26151130
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Programmed Cell Death and Aerenchyma Formation in Water-Logged Sunflower Stems and Its Promotion by Ethylene and ROS.
    Ni XL; Gui MY; Tan LL; Zhu Q; Liu WZ; Li CX
    Front Plant Sci; 2018; 9():1928. PubMed ID: 30687344
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pivotal role for root cell wall polysaccharides in cultivar-dependent cadmium accumulation in Brassica chinensis L.
    Wang L; Li R; Yan X; Liang X; Sun Y; Xu Y
    Ecotoxicol Environ Saf; 2020 May; 194():110369. PubMed ID: 32135380
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Changes in cell wall ultrastructure induced by sudden flooding at 25{degrees}C in Pisum sativum (Fabaceae) primary roots.
    Sarkar P; Niki T; Gladish DK
    Am J Bot; 2008 Jul; 95(7):782-92. PubMed ID: 21632404
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pectin-like carbohydrates in the green alga Micrasterias characterized by cytochemical analysis and energy filtering TEM.
    Eder M; Lütz-Meindl U
    J Microsc; 2008 Aug; 231(2):201-14. PubMed ID: 18778418
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Key root traits of Poaceae for adaptation to soil water gradients.
    Yamauchi T; Pedersen O; Nakazono M; Tsutsumi N
    New Phytol; 2021 Mar; 229(6):3133-3140. PubMed ID: 33222170
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Pyramiding of Three Key Root Traits Aid Breeding of Flood-Tolerant Rice.
    Lin C; Zhu T; Ogorek LLP; Wang Y; Sauter M; Pedersen O
    Plants (Basel); 2022 Aug; 11(15):. PubMed ID: 35956512
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Immunoprofiling of Rice Root Cortex Reveals Two Cortical Subdomains.
    Henry S; Divol F; Bettembourg M; Bureau C; Guiderdoni E; Périn C; Diévart A
    Front Plant Sci; 2015; 6():1139. PubMed ID: 26779208
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Newly identified miRNAs may contribute to aerenchyma formation in sugarcane roots.
    Queiroz de Pinho Tavares E; Camara Mattos Martins M; Grandis A; Romim GH; Rusiska Piovezani A; Weissmann Gaiarsa J; Silveira Buckeridge M
    Plant Direct; 2020 Mar; 4(3):e00204. PubMed ID: 32226917
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Caspase 3-like protease is involved in ethylene-induced programmed cell death during aerenchyma formation in Helianthus annuus stem.
    Ni XL; Hou H; Xie Q; Zhang H; Yan P; Lv Y
    Microsc Res Tech; 2022 Nov; 85(11):3707-3715. PubMed ID: 36250445
    [TBL] [Abstract][Full Text] [Related]  

  • 38. De novo transcriptomic analysis to identify differentially expressed genes during the process of aerenchyma formation in Typha angustifolia leaves.
    Du XM; Ni XL; Ren XL; Xin GL; Jia GL; Liu HD; Liu WZ
    Gene; 2018 Jul; 662():66-75. PubMed ID: 29625266
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Asymmetric auxin distribution establishes a contrasting pattern of aerenchyma formation in the nodal roots of
    Ning J; Yamauchi T; Takahashi H; Omori F; Mano Y; Nakazono M
    Front Plant Sci; 2023; 14():1133009. PubMed ID: 37152158
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aerenchyma formation in the wetland plant Juncus effusus is independent of ethylene.
    Visser EJ; Bögemann GM
    New Phytol; 2006; 171(2):305-14. PubMed ID: 16866938
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.