These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 32117391)

  • 1. The Role of Grass
    Serna L
    Front Plant Sci; 2020; 11():55. PubMed ID: 32117391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Role of Grass
    Serna L
    Front Plant Sci; 2021; 12():678417. PubMed ID: 34249046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BZU2/ZmMUTE controls symmetrical division of guard mother cell and specifies neighbor cell fate in maize.
    Wang H; Guo S; Qiao X; Guo J; Li Z; Zhou Y; Bai S; Gao Z; Wang D; Wang P; Galbraith DW; Song CP
    PLoS Genet; 2019 Aug; 15(8):e1008377. PubMed ID: 31465456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mobile MUTE specifies subsidiary cells to build physiologically improved grass stomata.
    Raissig MT; Matos JL; Anleu Gil MX; Kornfeld A; Bettadapur A; Abrash E; Allison HR; Badgley G; Vogel JP; Berry JA; Bergmann DC
    Science; 2017 Mar; 355(6330):1215-1218. PubMed ID: 28302860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expanded roles and divergent regulation of FAMA in Brachypodium and Arabidopsis stomatal development.
    McKown KH; Anleu Gil MX; Mair A; Xu SL; Raissig MT; Bergmann DC
    Plant Cell; 2023 Feb; 35(2):756-775. PubMed ID: 36440974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stomatal development in Arabidopsis and grasses: differences and commonalities.
    Serna L
    Int J Dev Biol; 2011; 55(1):5-10. PubMed ID: 21425077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stomatal development in the grasses: lessons from models and crops (and crop models).
    McKown KH; Bergmann DC
    New Phytol; 2020 Sep; 227(6):1636-1648. PubMed ID: 31985072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The bHLH protein, MUTE, controls differentiation of stomata and the hydathode pore in Arabidopsis.
    Pillitteri LJ; Bogenschutz NL; Torii KU
    Plant Cell Physiol; 2008 Jun; 49(6):934-43. PubMed ID: 18450784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Opposite polarity programs regulate asymmetric subsidiary cell divisions in grasses.
    Zhang D; Spiegelhalder RP; Abrash EB; Nunes TDG; Hidalgo I; Anleu Gil MX; Jesenofsky B; Lindner H; Bergmann DC; Raissig MT
    Elife; 2022 Dec; 11():. PubMed ID: 36537077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Form, development and function of grass stomata.
    Nunes TDG; Zhang D; Raissig MT
    Plant J; 2020 Feb; 101(4):780-799. PubMed ID: 31571301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flanking Support: How Subsidiary Cells Contribute to Stomatal Form and Function.
    Gray A; Liu L; Facette M
    Front Plant Sci; 2020; 11():881. PubMed ID: 32714346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. OsBC1L1 and OsBC1L8 function in stomatal development in rice.
    Li Z; Sun P; Sun P; Liang YK; Ge S
    Biochem Biophys Res Commun; 2021 Oct; 576():40-47. PubMed ID: 34478918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Timely expression of the Arabidopsis stoma-fate master regulator MUTE is required for specification of other epidermal cell types.
    Triviño M; Martín-Trillo M; Ballesteros I; Delgado D; de Marcos A; Desvoyes B; Gutiérrez C; Mena M; Fenoll C
    Plant J; 2013 Sep; 75(5):808-22. PubMed ID: 23662679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple transcriptional factors control stomata development in rice.
    Wu Z; Chen L; Yu Q; Zhou W; Gou X; Li J; Hou S
    New Phytol; 2019 Jul; 223(1):220-232. PubMed ID: 30825332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orthologs of Arabidopsis thaliana stomatal bHLH genes and regulation of stomatal development in grasses.
    Liu T; Ohashi-Ito K; Bergmann DC
    Development; 2009 Jul; 136(13):2265-76. PubMed ID: 19502487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The maize single-nucleus transcriptome comprehensively describes signaling networks governing movement and development of grass stomata.
    Sun G; Xia M; Li J; Ma W; Li Q; Xie J; Bai S; Fang S; Sun T; Feng X; Guo G; Niu Y; Hou J; Ye W; Ma J; Guo S; Wang H; Long Y; Zhang X; Zhang J; Zhou H; Li B; Liu J; Zou C; Wang H; Huang J; Galbraith DW; Song CP
    Plant Cell; 2022 Apr; 34(5):1890-1911. PubMed ID: 35166333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Grasses use an alternatively wired bHLH transcription factor network to establish stomatal identity.
    Raissig MT; Abrash E; Bettadapur A; Vogel JP; Bergmann DC
    Proc Natl Acad Sci U S A; 2016 Jul; 113(29):8326-31. PubMed ID: 27382177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Termination of asymmetric cell division and differentiation of stomata.
    Pillitteri LJ; Sloan DB; Bogenschutz NL; Torii KU
    Nature; 2007 Feb; 445(7127):501-5. PubMed ID: 17183267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A2-type cyclin is required for the asymmetric entry division in rice stomatal development.
    Qu X; Yan M; Zou J; Jiang M; Yang K; Le J
    J Exp Bot; 2018 Jun; 69(15):3587-3599. PubMed ID: 29701802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential expression of K+ channels between guard cells and subsidiary cells within the maize stomatal complex.
    Büchsenschütz K; Marten I; Becker D; Philippar K; Ache P; Hedrich R
    Planta; 2005 Dec; 222(6):968-76. PubMed ID: 16021501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.