These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 32117441)

  • 1. Sparse Convolutional Neural Networks for Genome-Wide Prediction.
    Waldmann P; Pfeiffer C; Mészáros G
    Front Genet; 2020; 11():25. PubMed ID: 32117441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Approximate Bayesian neural networks in genomic prediction.
    Waldmann P
    Genet Sel Evol; 2018 Dec; 50(1):70. PubMed ID: 30577737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AUTALASSO: an automatic adaptive LASSO for genome-wide prediction.
    Waldmann P; Ferenčaković M; Mészáros G; Khayatzadeh N; Curik I; Sölkner J
    BMC Bioinformatics; 2019 Apr; 20(1):167. PubMed ID: 30940067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using Local Convolutional Neural Networks for Genomic Prediction.
    Pook T; Freudenthal J; Korte A; Simianer H
    Front Genet; 2020; 11():561497. PubMed ID: 33281867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide prediction using Bayesian additive regression trees.
    Waldmann P
    Genet Sel Evol; 2016 Jun; 48(1):42. PubMed ID: 27286957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A proximal LAVA method for genome-wide association and prediction of traits with mixed inheritance patterns.
    Waldmann P
    BMC Bioinformatics; 2021 Oct; 22(1):523. PubMed ID: 34702175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide prediction for complex traits under the presence of dominance effects in simulated populations using GBLUP and machine learning methods.
    Alves AAC; da Costa RM; Bresolin T; Fernandes Júnior GA; Espigolan R; Ribeiro AMF; Carvalheiro R; de Albuquerque LG
    J Anim Sci; 2020 Jun; 98(6):. PubMed ID: 32474602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Guide for Using Deep Learning for Complex Trait Genomic Prediction.
    Pérez-Enciso M; Zingaretti LM
    Genes (Basel); 2019 Jul; 10(7):. PubMed ID: 31330861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Splice2Deep: An ensemble of deep convolutional neural networks for improved splice site prediction in genomic DNA.
    Albaradei S; Magana-Mora A; Thafar M; Uludag M; Bajic VB; Gojobori T; Essack M; Jankovic BR
    Gene X; 2020 Dec; 5():100035. PubMed ID: 32550561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A New Deep Learning Calibration Method Enhances Genome-Based Prediction of Continuous Crop Traits.
    Montesinos-López OA; Montesinos-López A; Mosqueda-González BA; Bentley AR; Lillemo M; Varshney RK; Crossa J
    Front Genet; 2021; 12():798840. PubMed ID: 34976026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring Deep Learning for Complex Trait Genomic Prediction in Polyploid Outcrossing Species.
    Zingaretti LM; Gezan SA; Ferrão LFV; Osorio LF; Monfort A; Muñoz PR; Whitaker VM; Pérez-Enciso M
    Front Plant Sci; 2020; 11():25. PubMed ID: 32117371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Technical note: an R package for fitting sparse neural networks with application in animal breeding.
    Wang Y; Mi X; Rosa GJM; Chen Z; Lin P; Wang S; Bao Z
    J Anim Sci; 2018 May; 96(5):2016-2026. PubMed ID: 29529218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-Wide Prediction of Complex Traits in Two Outcrossing Plant Species Through Deep Learning and Bayesian Regularized Neural Network.
    Maldonado C; Mora-Poblete F; Contreras-Soto RI; Ahmar S; Chen JT; do Amaral Júnior AT; Scapim CA
    Front Plant Sci; 2020; 11():593897. PubMed ID: 33329658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of a Bayesian model including QTL markers increases prediction reliability when test animals are distant from the reference population.
    Ma P; Lund MS; Aamand GP; Su G
    J Dairy Sci; 2019 Aug; 102(8):7237-7247. PubMed ID: 31155255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNNGP, a deep neural network-based method for genomic prediction using multi-omics data in plants.
    Wang K; Abid MA; Rasheed A; Crossa J; Hearne S; Li H
    Mol Plant; 2023 Jan; 16(1):279-293. PubMed ID: 36366781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Learning for Predicting Complex Traits in Spring Wheat Breeding Program.
    Sandhu KS; Lozada DN; Zhang Z; Pumphrey MO; Carter AH
    Front Plant Sci; 2020; 11():613325. PubMed ID: 33469463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors Affecting the Accuracy of Genomic Selection for Agricultural Economic Traits in Maize, Cattle, and Pig Populations.
    Zhang H; Yin L; Wang M; Yuan X; Liu X
    Front Genet; 2019; 10():189. PubMed ID: 30923535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling.
    Mutasa S; Chang PD; Ruzal-Shapiro C; Ayyala R
    J Digit Imaging; 2018 Aug; 31(4):513-519. PubMed ID: 29404850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-environment Genomic Prediction of Plant Traits Using Deep Learners With Dense Architecture.
    Montesinos-López A; Montesinos-López OA; Gianola D; Crossa J; Hernández-Suárez CM
    G3 (Bethesda); 2018 Dec; 8(12):3813-3828. PubMed ID: 30291107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A deep convolutional neural network approach for predicting phenotypes from genotypes.
    Ma W; Qiu Z; Song J; Li J; Cheng Q; Zhai J; Ma C
    Planta; 2018 Nov; 248(5):1307-1318. PubMed ID: 30101399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.