These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 32117451)

  • 21. Statistical Methods for Transcriptome-Wide Analysis of RNA Methylation by Bisulfite Sequencing.
    Parker BJ
    Methods Mol Biol; 2017; 1562():155-167. PubMed ID: 28349460
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sequencing-based methods for detection and quantitation of ribose methylations in RNA.
    Krogh N; Nielsen H
    Methods; 2019 Mar; 156():5-15. PubMed ID: 30503826
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-throughput sequencing for 1-methyladenosine (m(1)A) mapping in RNA.
    Tserovski L; Marchand V; Hauenschild R; Blanloeil-Oillo F; Helm M; Motorin Y
    Methods; 2016 Sep; 107():110-21. PubMed ID: 26922842
    [TBL] [Abstract][Full Text] [Related]  

  • 24. BisAMP: A web-based pipeline for targeted RNA cytosine-5 methylation analysis.
    Bormann F; Tuorto F; Cirzi C; Lyko F; Legrand C
    Methods; 2019 Mar; 156():121-127. PubMed ID: 30366099
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-throughput and site-specific identification of 2'-
    Zhu Y; Pirnie SP; Carmichael GG
    RNA; 2017 Aug; 23(8):1303-1314. PubMed ID: 28495677
    [TBL] [Abstract][Full Text] [Related]  

  • 26. viGEN: An Open Source Pipeline for the Detection and Quantification of Viral RNA in Human Tumors.
    Bhuvaneshwar K; Song L; Madhavan S; Gusev Y
    Front Microbiol; 2018; 9():1172. PubMed ID: 29922260
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selective detection of ribose-methylated nucleotides in RNA by a mass spectrometry-based method.
    Qiu F; McCloskey JA
    Nucleic Acids Res; 1999 Sep; 27(18):e20. PubMed ID: 10471750
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Methylation modifications in eukaryotic messenger RNA.
    Liu J; Jia G
    J Genet Genomics; 2014 Jan; 41(1):21-33. PubMed ID: 24480744
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Dark Side of the Epitranscriptome: Chemical Modifications in Long Non-Coding RNAs.
    Jacob R; Zander S; Gutschner T
    Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29125541
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Bioinformatic Pipeline for Monitoring of the Mutational Stability of Viral Drug Targets with Deep-Sequencing Technology.
    Kravatsky Y; Chechetkin V; Fedoseeva D; Gorbacheva M; Kravatskaya G; Kretova O; Tchurikov N
    Viruses; 2017 Nov; 9(12):. PubMed ID: 29168754
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A comparison of sequencing platforms and bioinformatics pipelines for compositional analysis of the gut microbiome.
    Allali I; Arnold JW; Roach J; Cadenas MB; Butz N; Hassan HM; Koci M; Ballou A; Mendoza M; Ali R; Azcarate-Peril MA
    BMC Microbiol; 2017 Sep; 17(1):194. PubMed ID: 28903732
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Archaeal homologs of eukaryotic methylation guide small nucleolar RNAs: lessons from the Pyrococcus genomes.
    Gaspin C; Cavaillé J; Erauso G; Bachellerie JP
    J Mol Biol; 2000 Apr; 297(4):895-906. PubMed ID: 10736225
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reading Chemical Modifications in the Transcriptome.
    Song J; Yi C
    J Mol Biol; 2020 Mar; 432(6):1824-1839. PubMed ID: 31628951
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-Throughput Small RNA Sequencing Enhanced by AlkB-Facilitated RNA de-Methylation (ARM-Seq).
    Hrabeta-Robinson E; Marcus E; Cozen AE; Phizicky EM; Lowe TM
    Methods Mol Biol; 2017; 1562():231-243. PubMed ID: 28349464
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RMBase: a resource for decoding the landscape of RNA modifications from high-throughput sequencing data.
    Sun WJ; Li JH; Liu S; Wu J; Zhou H; Qu LH; Yang JH
    Nucleic Acids Res; 2016 Jan; 44(D1):D259-65. PubMed ID: 26464443
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pseudouridine: the fifth RNA nucleotide with renewed interests.
    Li X; Ma S; Yi C
    Curr Opin Chem Biol; 2016 Aug; 33():108-16. PubMed ID: 27348156
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nucleotide-Level Profiling of m⁵C RNA Methylation.
    Sibbritt T; Shafik A; Clark SJ; Preiss T
    Methods Mol Biol; 2016; 1358():269-84. PubMed ID: 26463389
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Editorial: Computational Epitranscriptomics: Bioinformatic Approaches for the Analysis of RNA Modifications.
    Dassi E; Baranov PV; Pelizzola M
    Front Genet; 2020; 11():630360. PubMed ID: 33362872
    [No Abstract]   [Full Text] [Related]  

  • 39. Epitranscriptomics of cancer.
    Tusup M; Kundig T; Pascolo S
    World J Clin Oncol; 2018 Jun; 9(3):42-55. PubMed ID: 29900123
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pseudouridine modification in Caenorhabditis elegans spliceosomal snRNAs: unique modifications are found in regions involved in snRNA-snRNA interactions.
    Patton JR; Padgett RW
    BMC Mol Biol; 2005 Oct; 6():20. PubMed ID: 16236171
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.