These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 32117668)

  • 1. Understanding nanoparticle flow with a new in vitro experimental and computational approach using hydrogel channels.
    Boutchuen A; Zimmerman D; Arabshahi A; Melnyczuk J; Palchoudhury S
    Beilstein J Nanotechnol; 2020; 11():296-309. PubMed ID: 32117668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of hybrid polymeric nanoparticle/thermosensitive hydrogels systems on formulation tracking and in vitro artificial membrane permeation: A promising system for skin drug-delivery.
    Grillo R; Dias FV; Querobino SM; Alberto-Silva C; Fraceto LF; de Paula E; de Araujo DR
    Colloids Surf B Biointerfaces; 2019 Feb; 174():56-62. PubMed ID: 30439638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of nanoparticle transport through the female reproductive tract for the treatment of infectious diseases.
    Sims LB; Miller HA; Halwes ME; Steinbach-Rankins JM; Frieboes HB
    Eur J Pharm Biopharm; 2019 May; 138():37-47. PubMed ID: 30195726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of Red Blood Cells on Nanoparticle Targeted Delivery in Microcirculation.
    Tan J; Thomas A; Liu Y
    Soft Matter; 2011 Dec; 8():1934-1946. PubMed ID: 22375153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Delineating the Relationship between Nanoparticle Attachment Efficiency and Fluid Flow Velocity.
    Kim C; Pennell KD; Fortner JD
    Environ Sci Technol; 2020 Nov; 54(21):13992-13999. PubMed ID: 33052644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational fluid dynamics simulation of transport and retention of nanoparticle in saturated sand filters.
    Hassan AA; Li Z; Sahle-Demessie E; Sorial GA
    J Hazard Mater; 2013 Jan; 244-245():251-8. PubMed ID: 23270949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Efficiency Nose-to-Lung Aerosol Delivery in an Infant: Development of a Validated Computational Fluid Dynamics Method.
    Bass K; Boc S; Hindle M; Dodson K; Longest W
    J Aerosol Med Pulm Drug Deliv; 2019 Jun; 32(3):132-148. PubMed ID: 30556777
    [No Abstract]   [Full Text] [Related]  

  • 8. A high-throughput bioimaging study to assess the impact of chitosan-based nanoparticle degradation on DNA delivery performance.
    Gomes CP; Varela-Moreira A; Leiro V; Lopes CDF; Moreno PMD; Gomez-Lazaro M; Pêgo AP
    Acta Biomater; 2016 Dec; 46():129-140. PubMed ID: 27686038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bridging the Gap between Macroscale Drug Delivery Systems and Nanomedicines: A Nanoparticle-Assembled Thermosensitive Hydrogel for Peritumoral Chemotherapy.
    Huang P; Song H; Zhang Y; Liu J; Zhang J; Wang W; Liu J; Li C; Kong D
    ACS Appl Mater Interfaces; 2016 Nov; 8(43):29323-29333. PubMed ID: 27731617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrodynamic chromatography online with single particle-inductively coupled plasma mass spectrometry for ultratrace detection of metal-containing nanoparticles.
    Pergantis SA; Jones-Lepp TL; Heithmar EM
    Anal Chem; 2012 Aug; 84(15):6454-62. PubMed ID: 22804728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of size, shape and vessel geometry on nanoparticle distribution.
    Tan J; Shah S; Thomas A; Ou-Yang HD; Liu Y
    Microfluid Nanofluidics; 2013 Jan; 14(1-2):77-87. PubMed ID: 23554583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical simulation of transport and adhesion of thermogenic nano-carriers in microvessels.
    Yue K; You Y; Yang C; Niu Y; Zhang X
    Soft Matter; 2020 Dec; 16(45):10345-10357. PubMed ID: 33053003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of an Experimental and Digital Cardiovascular Arterial Model for Transient Hemodynamic and Postural Change Studies: "A Preliminary Framework Analysis".
    Hewlin RL; Kizito JP
    Cardiovasc Eng Technol; 2018 Mar; 9(1):1-31. PubMed ID: 29124548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoparticle ζ -potentials.
    Doane TL; Chuang CH; Hill RJ; Burda C
    Acc Chem Res; 2012 Mar; 45(3):317-26. PubMed ID: 22074988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanotechnology as a therapeutic tool to combat microbial resistance.
    Pelgrift RY; Friedman AJ
    Adv Drug Deliv Rev; 2013 Nov; 65(13-14):1803-15. PubMed ID: 23892192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow field-flow fractionation for the analysis of nanoparticles used in drug delivery.
    Zattoni A; Roda B; Borghi F; Marassi V; Reschiglian P
    J Pharm Biomed Anal; 2014 Jan; 87():53-61. PubMed ID: 24012480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A 3-dimensional micro- and nanoparticle transport and filtration model (MNM3D) applied to the migration of carbon-based nanomaterials in porous media.
    Bianco C; Tosco T; Sethi R
    J Contam Hydrol; 2016 Oct; 193():10-20. PubMed ID: 27607520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled and sustained delivery of siRNA/NPs from hydrogels expedites bone fracture healing.
    Wang Y; Malcolm DW; Benoit DSW
    Biomaterials; 2017 Sep; 139():127-138. PubMed ID: 28601703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupled Particulate and Continuum Model for Nanoparticle Targeted Delivery.
    Tan J; Wang S; Yang J; Liu Y
    Comput Struct; 2013 Jun; 122():128-134. PubMed ID: 23729869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational and Experimental Analysis of Fluid Transport Through Three-Dimensional Collagen-Matrigel Hydrogels.
    Marshall LE; Koomullil R; Frost AR; Berry JL
    Ann Biomed Eng; 2017 Apr; 45(4):1027-1038. PubMed ID: 27770219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.