These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 32117678)

  • 1. Transcript profiling reveals potential regulators for oxidative stress response of a necrotrophic chickpea pathogen
    Maurya R; Singh Y; Sinha M; Singh K; Mishra P; Singh SK; Verma S; Prabha K; Kumar K; Verma PK
    3 Biotech; 2020 Mar; 10(3):117. PubMed ID: 32117678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In planta Identification of Putative Pathogenicity Factors from the Chickpea Pathogen Ascochyta rabiei by De novo Transcriptome Sequencing Using RNA-Seq and Massive Analysis of cDNA Ends.
    Fondevilla S; Krezdorn N; Rotter B; Kahl G; Winter P
    Front Microbiol; 2015; 6():1329. PubMed ID: 26648917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative transcriptome analysis of the necrotrophic fungus Ascochyta rabiei during oxidative stress: insight for fungal survival in the host plant.
    Singh K; Nizam S; Sinha M; Verma PK
    PLoS One; 2012; 7(3):e33128. PubMed ID: 22427966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcription Factor Repertoire of Necrotrophic Fungal Phytopathogen
    Verma S; Gazara RK; Verma PK
    Front Plant Sci; 2017; 8():1037. PubMed ID: 28659964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Global Transcriptome and Co-expression Analysis Reveals Robust Host Defense Pathway Reprogramming and Identifies Key Regulators of Early Phases of
    Singh R; Dwivedi A; Singh Y; Kumar K; Ranjan A; Verma PK
    Mol Plant Microbe Interact; 2022 Nov; 35(11):1034-1047. PubMed ID: 35939621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential transcript accumulation in chickpea during early phases of compatible interaction with a necrotrophic fungus Ascochyta rabiei.
    Jaiswal P; Cheruku JR; Kumar K; Yadav S; Singh A; Kumari P; Dube SC; Upadhyaya KC; Verma PK
    Mol Biol Rep; 2012 Apr; 39(4):4635-46. PubMed ID: 21956755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Draft genome sequencing and secretome analysis of fungal phytopathogen Ascochyta rabiei provides insight into the necrotrophic effector repertoire.
    Verma S; Gazara RK; Nizam S; Parween S; Chattopadhyay D; Verma PK
    Sci Rep; 2016 Apr; 6():24638. PubMed ID: 27091329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression profiling of chickpea genes differentially regulated during a resistance response to Ascochyta rabiei.
    Coram TE; Pang EC
    Plant Biotechnol J; 2006 Nov; 4(6):647-66. PubMed ID: 17309735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of the Key Resistance Gene Analogs Involved in
    Zhou Z; Bar I; Sambasivam PT; Ford R
    Front Plant Sci; 2019; 10():644. PubMed ID: 31191572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. mQTL-seq and classical mapping implicates the role of an AT-HOOK MOTIF CONTAINING NUCLEAR LOCALIZED (AHL) family gene in Ascochyta blight resistance of chickpea.
    Kumar K; Purayannur S; Kaladhar VC; Parida SK; Verma PK
    Plant Cell Environ; 2018 Sep; 41(9):2128-2140. PubMed ID: 29492990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The nuclear effector ArPEC25 from the necrotrophic fungus Ascochyta rabiei targets the chickpea transcription factor CaβLIM1a and negatively modulates lignin biosynthesis, increasing host susceptibility.
    Singh SK; Shree A; Verma S; Singh K; Kumar K; Srivastava V; Singh R; Saxena S; Singh AP; Pandey A; Verma PK
    Plant Cell; 2023 Mar; 35(3):1134-1159. PubMed ID: 36585808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathotype-specific genetic factors in chickpea (Cicer arietinum L.) for quantitative resistance to ascochyta blight.
    Cho S; Chen W; Muehlbauer FJ
    Theor Appl Genet; 2004 Aug; 109(4):733-9. PubMed ID: 15146319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathogenic Diversity of
    Farahani S; Talebi R; Maleki M; Mehrabi R; Kanouni H
    Plant Pathol J; 2019 Aug; 35(4):321-329. PubMed ID: 31481855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First Report of Ascochyta Blight Caused by QoI-Resistant Isolates of Ascochyta rabiei in Chickpea Fields of Nebraska and South Dakota.
    Delgado JA; Goswami RS; Harveson RM; Urrea CA; Beran D; Markell SG
    Plant Dis; 2012 Jul; 96(7):1073. PubMed ID: 30727247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ascochyta Blight in Chickpea: An Update.
    Foresto E; Carezzano ME; Giordano W; Bogino P
    J Fungi (Basel); 2023 Feb; 9(2):. PubMed ID: 36836317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptional profiling of chickpea genes differentially regulated by salicylic acid, methyl jasmonate and aminocyclopropane carboxylic acid to reveal pathways of defence-related gene regulation.
    Coram TE; Pang ECK
    Funct Plant Biol; 2007 Feb; 34(1):52-64. PubMed ID: 32689331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of Novel Sources of Resistance to Ascochyta Blight in a Collection of Wild
    Newman TE; Jacques S; Grime C; Kamphuis FL; Lee RC; Berger J; Kamphuis LG
    Phytopathology; 2021 Feb; 111(2):369-379. PubMed ID: 32787627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First Report of Ascochyta Blight of Chickpea in Latin America.
    Kaiser WJ; Coca W F; Vega O S
    Plant Dis; 2000 Jan; 84(1):102. PubMed ID: 30841208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First Report of Ascochyta rabiei Causing Ascochyta Blight of Chickpea in Argentina.
    Viotti G; Carmona MA; Scandiani M; Formento AN; Luque A
    Plant Dis; 2012 Sep; 96(9):1375. PubMed ID: 30727169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First Report of Ascochyta Blight of Chickpea Caused by Ascochyta rabiei in Chile.
    Galdames R; Mera M
    Plant Dis; 2003 May; 87(5):603. PubMed ID: 30812981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.