BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

609 related articles for article (PubMed ID: 32117866)

  • 1. Conversion of Biomass to Organic Acids by Liquefaction Reactions Under Subcritical Conditions.
    Yüksel Özşen A
    Front Chem; 2020; 8():24. PubMed ID: 32117866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined supercritical and subcritical process for cellulose hydrolysis to fermentable hexoses.
    Zhao Y; Lu WJ; Wang HT; Li D
    Environ Sci Technol; 2009 Mar; 43(5):1565-70. PubMed ID: 19350936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conversion of Japanese red pine wood (Pinus densiflora) into valuable chemicals under subcritical water conditions.
    Asghari FS; Yoshida H
    Carbohydr Res; 2010 Jan; 345(1):124-31. PubMed ID: 19892325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrothermal pretreatment technologies for lignocellulosic biomass: A review of steam explosion and subcritical water hydrolysis.
    Sarker TR; Pattnaik F; Nanda S; Dalai AK; Meda V; Naik S
    Chemosphere; 2021 Dec; 284():131372. PubMed ID: 34323806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subcritical water hydrolysis of N-acetyl-D-glucosamine: Hydrolysis mechanism, reaction pathways and optimization for selective production of 5-HMF and levulinic acid.
    Kulkarni SP; Dure SN; Joshi SS; Pandare KV; Mali NA
    Carbohydr Res; 2022 Jun; 516():108560. PubMed ID: 35483153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of green solvent on levulinic acid production from lignocellulosic paper waste.
    Dutta S; Yu IKM; Tsang DCW; Su Z; Hu C; Wu KCW; Yip ACK; Ok YS; Poon CS
    Bioresour Technol; 2020 Feb; 298():122544. PubMed ID: 31838242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrothermal liquefaction of agricultural and forestry wastes: state-of-the-art review and future prospects.
    Cao L; Zhang C; Chen H; Tsang DCW; Luo G; Zhang S; Chen J
    Bioresour Technol; 2017 Dec; 245(Pt A):1184-1193. PubMed ID: 28893498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subcritical water as reaction environment: fundamentals of hydrothermal biomass transformation.
    Möller M; Nilges P; Harnisch F; Schröder U
    ChemSusChem; 2011 May; 4(5):566-79. PubMed ID: 21322117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of hydrothermal conversion of bamboo (Phyllostachys aureosulcata) to levulinic acid via response surface methodology.
    Sweygers N; Somers MH; Appels L
    J Environ Manage; 2018 Aug; 219():95-102. PubMed ID: 29734015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of supercritical phase and combined supercritical/subcritical conversion of lignocellulose for hexose production by using a flow reaction system.
    Zhao Y; Lu WJ; Wu HY; Liu JW; Wang HT
    Bioresour Technol; 2012 Dec; 126():391-6. PubMed ID: 22459955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The performance of 1,3-dipropyl-2-(2-propoxyphenyl)-4,5-diphenylimidazolium iodide based ionic liquid for biomass conversion into levulinic acid and formic acid.
    Zunita M; Wahyuningrum D; Buchari ; Bundjali B; Gede Wenten I; Boopathy R
    Bioresour Technol; 2020 Nov; 315():123864. PubMed ID: 32711338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel approach to biphasic strategy for intensification of the hydrothermal process to give levulinic acid: Use of an organic non-solvent.
    Licursi D; Antonetti C; Parton R; Raspolli Galletti AM
    Bioresour Technol; 2018 Sep; 264():180-189. PubMed ID: 29803088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined ultrasonic/subcritical water hydrolysis pretreatments for agricultural biomass.
    Rampelotto de Azevedo A; Nascimento Dos Santos MS; Perinazzo Draszewski C; de Castilhos F; Rossi Abaide E; Zabot GL; Tres MV
    Environ Technol; 2023; 44(19):2969-2982. PubMed ID: 35226584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Governing chemistry of cellulose hydrolysis in supercritical water.
    Cantero DA; Bermejo MD; Cocero MJ
    ChemSusChem; 2015 Mar; 8(6):1026-33. PubMed ID: 25704124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acidic seawater improved 5-hydroxymethylfurfural yield from sugarcane bagasse under microwave hydrothermal liquefaction.
    Shao Y; Tsang DCW; Shen D; Zhou Y; Jin Z; Zhou D; Lu W; Long Y
    Environ Res; 2020 May; 184():109340. PubMed ID: 32209494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Valorization of lignocellulosic fibres of paper waste into levulinic acid using solid and aqueous Brønsted acid.
    Chen SS; Wang L; Yu IKM; Tsang DCW; Hunt AJ; Jérôme F; Zhang S; Ok YS; Poon CS
    Bioresour Technol; 2018 Jan; 247():387-394. PubMed ID: 28957771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bio oil production from microalgae via hydrothermal liquefaction technology under subcritical water conditions.
    Kiran Kumar P; Vijaya Krishna S; Verma K; Pooja K; Bhagawan D; Srilatha K; Himabindu V
    J Microbiol Methods; 2018 Oct; 153():108-117. PubMed ID: 30248442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic Production of Levulinic Acid (LA) from Actual Biomass.
    Signoretto M; Taghavi S; Ghedini E; Menegazzo F
    Molecules; 2019 Jul; 24(15):. PubMed ID: 31366018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels.
    Zhou CH; Xia X; Lin CX; Tong DS; Beltramini J
    Chem Soc Rev; 2011 Nov; 40(11):5588-617. PubMed ID: 21863197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.