These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 32117869)
21. Control of maleic acid-propylene diepoxide hydrogel for 3D printing application for flexible tissue engineering scaffold with high resolution by end capping and graft polymerization. Tran HN; Kim IG; Kim JH; Chung EJ; Noh I Biomater Res; 2022 Dec; 26(1):75. PubMed ID: 36494708 [TBL] [Abstract][Full Text] [Related]
22. Dual-Crosslinking of Gelatin-Based Hydrogels: Promising Compositions for a 3D Printed Organotypic Bone Model. Shehzad A; Mukasheva F; Moazzam M; Sultanova D; Abdikhan B; Trifonov A; Akilbekova D Bioengineering (Basel); 2023 Jun; 10(6):. PubMed ID: 37370635 [TBL] [Abstract][Full Text] [Related]
23. 3D printed multi-growth factor delivery patches fabricated using dual-crosslinked decellularized extracellular matrix-based hybrid inks to promote cerebral angiogenesis. Hwang SH; Kim J; Heo C; Yoon J; Kim H; Lee SH; Park HW; Heo MS; Moon HE; Kim C; Paek SH; Jang J Acta Biomater; 2023 Feb; 157():137-148. PubMed ID: 36460287 [TBL] [Abstract][Full Text] [Related]
24. 3D printing of tough hydrogels based on metal coordination with a two-step crosslinking strategy. Guo G; Wu Y; Du C; Yin J; Wu ZL; Zheng Q; Qian J J Mater Chem B; 2022 Mar; 10(13):2126-2134. PubMed ID: 35191448 [TBL] [Abstract][Full Text] [Related]
25. 3D Printable Dynamic Hydrogel: As Simple as it Gets! Díaz A; Herrada-Manchón H; Nunes J; Lopez A; Díaz N; Grande HJ; Loinaz I; Fernández MA; Dupin D Macromol Rapid Commun; 2022 Nov; 43(21):e2200449. PubMed ID: 35904533 [TBL] [Abstract][Full Text] [Related]
26. Gallol-derived ECM-mimetic adhesive bioinks exhibiting temporal shear-thinning and stabilization behavior. Shin M; Galarraga JH; Kwon MY; Lee H; Burdick JA Acta Biomater; 2019 Sep; 95():165-175. PubMed ID: 30366132 [TBL] [Abstract][Full Text] [Related]
27. Three-Dimensional-Printable Thermo/Photo-Cross-Linked Methacrylated Chitosan-Gelatin Hydrogel Composites for Tissue Engineering. Osi AR; Zhang H; Chen J; Zhou Y; Wang R; Fu J; Müller-Buschbaum P; Zhong Q ACS Appl Mater Interfaces; 2021 May; 13(19):22902-22913. PubMed ID: 33960765 [TBL] [Abstract][Full Text] [Related]
28. A dual-crosslinking electroactive hydrogel based on gelatin methacrylate and dibenzaldehyde-terminated telechelic polyethylene glycol for 3D bio-printing. Wang Y; Yang S; Cai H; Hu H; Hu K; Sun Z; Liu R; Wei Y; Han L Sci Rep; 2024 Feb; 14(1):4118. PubMed ID: 38374394 [TBL] [Abstract][Full Text] [Related]
29. A self-healing hydrogel and injectable cryogel of gelatin methacryloyl-polyurethane double network for 3D printing. Cheng QP; Hsu SH Acta Biomater; 2023 Jul; 164():124-138. PubMed ID: 37088162 [TBL] [Abstract][Full Text] [Related]
30. Dual crosslinking strategy to generate mechanically viable cell-laden printable constructs using methacrylated collagen bioinks. Kajave NS; Schmitt T; Nguyen TU; Kishore V Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110290. PubMed ID: 31761199 [TBL] [Abstract][Full Text] [Related]
31. Synthesis and Characterization of Dual Stimuli-Sensitive Biodegradable Polyurethane Soft Hydrogels for 3D Cell-Laden Bioprinting. Hsiao SH; Hsu SH ACS Appl Mater Interfaces; 2018 Sep; 10(35):29273-29287. PubMed ID: 30133249 [TBL] [Abstract][Full Text] [Related]
32. Electrically stimulated 3D bioprinting of gelatin-polypyrrole hydrogel with dynamic semi-IPN network induces osteogenesis via collective signaling and immunopolarization. Dutta SD; Ganguly K; Randhawa A; Patil TV; Patel DK; Lim KT Biomaterials; 2023 Mar; 294():121999. PubMed ID: 36669301 [TBL] [Abstract][Full Text] [Related]
33. Development of photo-crosslinkable platelet lysate-based hydrogels for 3D printing and tissue engineering. Min SJ; Lee JS; Nah H; Kim SH; Moon HJ; Reis RL; Kwon IK; Heo DN Biofabrication; 2021 Aug; 13(4):. PubMed ID: 34330124 [TBL] [Abstract][Full Text] [Related]
34. 3D Printing Method for Tough Multifunctional Particle-Based Double-Network Hydrogels. Zhao D; Liu Y; Liu B; Chen Z; Nian G; Qu S; Yang W ACS Appl Mater Interfaces; 2021 Mar; 13(11):13714-13723. PubMed ID: 33720679 [TBL] [Abstract][Full Text] [Related]
35. Bioinorganic nanocomposite hydrogels formed by HRP-GOx-cascade-catalyzed polymerization and exfoliation of the layered composites. Liao CA; Wu Q; Wei QC; Wang QG Chemistry; 2015 Sep; 21(36):12620-6. PubMed ID: 26230284 [TBL] [Abstract][Full Text] [Related]
37. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication. Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967 [TBL] [Abstract][Full Text] [Related]
38. 3D printable and injectable lactoferrin-loaded carboxymethyl cellulose-glycol chitosan hydrogels for tissue engineering applications. Janarthanan G; Tran HN; Cha E; Lee C; Das D; Noh I Mater Sci Eng C Mater Biol Appl; 2020 Aug; 113():111008. PubMed ID: 32487412 [TBL] [Abstract][Full Text] [Related]
39. Bioprinted anisotropic scaffolds with fast stress relaxation bioink for engineering 3D skeletal muscle and repairing volumetric muscle loss. Li T; Hou J; Wang L; Zeng G; Wang Z; Yu L; Yang Q; Yin J; Long M; Chen L; Chen S; Zhang H; Li Y; Wu Y; Huang W Acta Biomater; 2023 Jan; 156():21-36. PubMed ID: 36002128 [TBL] [Abstract][Full Text] [Related]
40. Multi-network granular hydrogel with enhanced strength for 3D bioprinting. Wang W; Chen X; Meng T; Liu L J Biomater Appl; 2022 May; 36(10):1852-1862. PubMed ID: 35225041 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]