These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 32117912)

  • 1. A Self-Setting Hydrogel of Silylated Chitosan and Cellulose for the Repair of Osteochondral Defects: From
    Boyer C; Réthoré G; Weiss P; d'Arros C; Lesoeur J; Vinatier C; Halgand B; Geffroy O; Fusellier M; Vaillant G; Roy P; Gauthier O; Guicheux J
    Front Bioeng Biotechnol; 2020; 8():23. PubMed ID: 32117912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silanization of Chitosan and Hydrogel Preparation for Skeletal Tissue Engineering.
    Réthoré G; Boyer C; Kouadio K; Toure A; Lesoeur J; Halgand B; Jordana F; Guicheux J; Weiss P
    Polymers (Basel); 2020 Nov; 12(12):. PubMed ID: 33261192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A moldable thermosensitive hydroxypropyl chitin hydrogel for 3D cartilage regeneration in vitro and in vivo.
    Xu Y; Xu Y; Bi B; Hou M; Yao L; Du Q; He A; Liu Y; Miao C; Liang X; Jiang X; Zhou G; Cao Y
    Acta Biomater; 2020 May; 108():87-96. PubMed ID: 32268237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Injectable immunomodulation-based porous chitosan microspheres/HPCH hydrogel composites as a controlled drug delivery system for osteochondral regeneration.
    Ji X; Shao H; Li X; Ullah MW; Luo G; Xu Z; Ma L; He X; Lei Z; Li Q; Jiang X; Yang G; Zhang Y
    Biomaterials; 2022 Jun; 285():121530. PubMed ID: 35504181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D printing of fibre-reinforced cartilaginous templates for the regeneration of osteochondral defects.
    Critchley S; Sheehy EJ; Cunniffe G; Diaz-Payno P; Carroll SF; Jeon O; Alsberg E; Brama PAJ; Kelly DJ
    Acta Biomater; 2020 Sep; 113():130-143. PubMed ID: 32505800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laponite nanoparticle-associated silated hydroxypropylmethyl cellulose as an injectable reinforced interpenetrating network hydrogel for cartilage tissue engineering.
    Boyer C; Figueiredo L; Pace R; Lesoeur J; Rouillon T; Visage CL; Tassin JF; Weiss P; Guicheux J; Rethore G
    Acta Biomater; 2018 Jan; 65():112-122. PubMed ID: 29128532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Treatment of osteochondral defects in the rabbit's knee joint by implantation of allogeneic mesenchymal stem cells in fibrin clots.
    Berninger MT; Wexel G; Rummeny EJ; Imhoff AB; Anton M; Henning TD; Vogt S
    J Vis Exp; 2013 May; (75):e4423. PubMed ID: 23728213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enriching a cellulose hydrogel with a biologically active marine exopolysaccharide for cell-based cartilage engineering.
    Rederstorff E; Rethore G; Weiss P; Sourice S; Beck-Cormier S; Mathieu E; Maillasson M; Jacques Y; Colliec-Jouault S; Fellah BH; Guicheux J; Vinatier C
    J Tissue Eng Regen Med; 2017 Apr; 11(4):1152-1164. PubMed ID: 25824373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of two- and three-dimensional cell culture on the chondrogenic potential of human adipose-derived mesenchymal stem cells after subcutaneous transplantation with an injectable hydrogel.
    Merceron C; Portron S; Masson M; Lesoeur J; Fellah BH; Gauthier O; Geffroy O; Weiss P; Guicheux J; Vinatier C
    Cell Transplant; 2011; 20(10):1575-88. PubMed ID: 21294960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and biological investigation of chitosan/hyaluronic acid with silanized-hydroxypropyl methylcellulose as an injectable reinforced interpenetrating network hydrogel for cartilage tissue engineering.
    Hu M; Yang J; Xu J
    Drug Deliv; 2021 Dec; 28(1):607-619. PubMed ID: 33739203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of in vitro low oxygen tension preconditioning of adipose stromal cells on their in vivo chondrogenic potential: application in cartilage tissue repair.
    Portron S; Merceron C; Gauthier O; Lesoeur J; Sourice S; Masson M; Fellah BH; Geffroy O; Lallemand E; Weiss P; Guicheux J; Vinatier C
    PLoS One; 2013; 8(4):e62368. PubMed ID: 23638053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CaAlg hydrogel containing bone morphogenetic protein 4-enhanced adipose-derived stem cells combined with osteochondral mosaicplasty facilitated the repair of large osteochondral defects.
    Chen L; Shi Y; Zhang X; Hu X; Shao Z; Dai L; Ju X; Ao Y; Wang J
    Knee Surg Sports Traumatol Arthrosc; 2019 Nov; 27(11):3668-3678. PubMed ID: 30923857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An injectable cellulose-based hydrogel for the transfer of autologous nasal chondrocytes in articular cartilage defects.
    Vinatier C; Gauthier O; Fatimi A; Merceron C; Masson M; Moreau A; Moreau F; Fellah B; Weiss P; Guicheux J
    Biotechnol Bioeng; 2009 Mar; 102(4):1259-67. PubMed ID: 18949749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repair of osteochondral defects using injectable chitosan-based hydrogel encapsulated synovial fluid-derived mesenchymal stem cells in a rabbit model.
    Jia Z; Zhu F; Li X; Liang Q; Zhuo Z; Huang J; Duan L; Xiong J; Wang D
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():541-551. PubMed ID: 30889728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of osteochondral defect size on cartilage regeneration using a double-network hydrogel.
    Higa K; Kitamura N; Goto K; Kurokawa T; Gong JP; Kanaya F; Yasuda K
    BMC Musculoskelet Disord; 2017 May; 18(1):210. PubMed ID: 28532476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production and Characterization of a Novel Bilayer Nanocomposite Scaffold Composed of Chitosan/Si-nHap and Zein/POSS Structures for Osteochondral Tissue Regeneration.
    Tamburaci S; Cecen B; Ustun O; Ergur BU; Havitcioglu H; Tihminlioglu F
    ACS Appl Bio Mater; 2019 Apr; 2(4):1440-1455. PubMed ID: 35026919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue engineering of cartilage using an injectable and adhesive chitosan-based cell-delivery vehicle.
    Hoemann CD; Sun J; Légaré A; McKee MD; Buschmann MD
    Osteoarthritis Cartilage; 2005 Apr; 13(4):318-29. PubMed ID: 15780645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional tissue-engineered microtissue derived from cartilage extracellular matrix for articular cartilage regeneration.
    Yin H; Wang Y; Sun X; Cui G; Sun Z; Chen P; Xu Y; Yuan X; Meng H; Xu W; Wang A; Guo Q; Lu S; Peng J
    Acta Biomater; 2018 Sep; 77():127-141. PubMed ID: 30030172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D-Printed Extracellular Matrix/Polyethylene Glycol Diacrylate Hydrogel Incorporating the Anti-inflammatory Phytomolecule Honokiol for Regeneration of Osteochondral Defects.
    Zhu S; Chen P; Chen Y; Li M; Chen C; Lu H
    Am J Sports Med; 2020 Sep; 48(11):2808-2818. PubMed ID: 32762553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of a novel polyvinyl alcohol/chitosan porous hydrogel combined with bone marrow mesenchymal stem cells and its application in articular cartilage repair.
    Peng L; Zhou Y; Lu W; Zhu W; Li Y; Chen K; Zhang G; Xu J; Deng Z; Wang D
    BMC Musculoskelet Disord; 2019 May; 20(1):257. PubMed ID: 31138200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.