These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 32117951)

  • 1. New Considerations for Collecting Biomechanical Data Using Wearable Sensors: The Effect of Different Running Environments.
    Benson LC; Clermont CA; Ferber R
    Front Bioeng Biotechnol; 2020; 8():86. PubMed ID: 32117951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tibial Acceleration during Running Is Higher in Field Testing Than Indoor Testing.
    Milner CE; Hawkins JL; Aubol KG
    Med Sci Sports Exerc; 2020 Jun; 52(6):1361-1366. PubMed ID: 31913243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Running patterns for male and female competitive and recreational runners based on accelerometer data.
    Clermont CA; Benson LC; Osis ST; Kobsar D; Ferber R
    J Sports Sci; 2019 Jan; 37(2):204-211. PubMed ID: 29920155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of ground technicity on cardio-respiratory and biomechanical parameters in uphill trail running.
    Nicot F; Sabater-Pastor F; Samozino P; Millet GY; Rupp T
    Eur J Sport Sci; 2022 Dec; 22(12):1836-1846. PubMed ID: 34663199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationships between tibial acceleration and ground reaction force measures in the medial-lateral and anterior-posterior planes.
    Johnson CD; Outerleys J; Davis IS
    J Biomech; 2021 Mar; 117():110250. PubMed ID: 33486264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classifying running speed conditions using a single wearable sensor: Optimal segmentation and feature extraction methods.
    Benson LC; Clermont CA; Osis ST; Kobsar D; Ferber R
    J Biomech; 2018 Apr; 71():94-99. PubMed ID: 29454542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wireless Tri-Axial Trunk Accelerometry Detects Deviations in Dynamic Center of Mass Motion Due to Running-Induced Fatigue.
    Schütte KH; Maas EA; Exadaktylos V; Berckmans D; Venter RE; Vanwanseele B
    PLoS One; 2015; 10(10):e0141957. PubMed ID: 26517261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New Considerations for Collecting Biomechanical Data Using Wearable Sensors: How Does Inclination Influence the Number of Runs Needed to Determine a Stable Running Gait Pattern?
    Ahamed NU; Benson LC; Clermont CA; Pohl AJ; Ferber R
    Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31159376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinematic Gait Patterns in Competitive and Recreational Runners.
    Clermont CA; Osis ST; Phinyomark A; Ferber R
    J Appl Biomech; 2017 Aug; 33(4):268-276. PubMed ID: 28253053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sacral acceleration can predict whole-body kinetics and stride kinematics across running speeds.
    Alcantara RS; Day EM; Hahn ME; Grabowski AM
    PeerJ; 2021; 9():e11199. PubMed ID: 33954039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fatigue-Related Changes in Running Gait Patterns Persist in the Days Following a Marathon Race.
    Clermont CA; Pohl AJ; Ferber R
    J Sport Rehabil; 2020 Sep; 29(7):934-941. PubMed ID: 31825892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using wearable sensors to classify subject-specific running biomechanical gait patterns based on changes in environmental weather conditions.
    Ahamed NU; Kobsar D; Benson L; Clermont C; Kohrs R; Osis ST; Ferber R
    PLoS One; 2018; 13(9):e0203839. PubMed ID: 30226903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical Indoor Running Gait Analysis May Not Approximate Outdoor Running Gait Based on Novel Drone Technology.
    Lafferty L; Wawrzyniak J; Chambers M; Pagliarulo T; Berg A; Hawila N; Silvis M
    Sports Health; 2022; 14(5):710-716. PubMed ID: 34758661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of treadmill versus overground running on the structure of variability of stride timing.
    Lindsay TR; Noakes TD; McGregor SJ
    Percept Mot Skills; 2014 Apr; 118(2):331-46. PubMed ID: 24897871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Are impact accelerations during treadmill running representative of those produced overground?
    Dillon S; Burke A; Whyte EF; O'Connor S; Gore S; Moran KA
    Gait Posture; 2022 Oct; 98():195-202. PubMed ID: 36166957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subject-specific and group-based running pattern classification using a single wearable sensor.
    Ahamed NU; Kobsar D; Benson LC; Clermont CA; Osis ST; Ferber R
    J Biomech; 2019 Feb; 84():227-233. PubMed ID: 30670327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of attachment methods of skin mounted inertial measurement units on tibial accelerations.
    Johnson CD; Outerleys J; Tenforde AS; Davis IS
    J Biomech; 2020 Dec; 113():110118. PubMed ID: 33197691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A support vector machine algorithm can successfully classify running ability when trained with wearable sensor data from anatomical locations typical of consumer technology.
    Carter JA; Rivadulla AR; Preatoni E
    Sports Biomech; 2022 Jan; ():1-18. PubMed ID: 35045801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of visual focus on spatio-temporal and kinematic parameters of treadmill running.
    Lucas-Cuevas ÁG; Priego Quesada JI; Gooding J; Lewis MGC; Encarnación-Martínez A; Perez-Soriano P
    Gait Posture; 2018 Jan; 59():292-297. PubMed ID: 28754421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Runners with patellofemoral pain demonstrate sub-groups of pelvic acceleration profiles using hierarchical cluster analysis: an exploratory cross-sectional study.
    Watari R; Osis ST; Phinyomark A; Ferber R
    BMC Musculoskelet Disord; 2018 Apr; 19(1):120. PubMed ID: 29673341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.