These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 32118130)

  • 41. Fabrication of monolithic polymer nanofluidic channels using nanowires as sacrificial templates.
    Chu KS; Kim S; Chung H; Oh JH; Seong TY; An BH; Kim YK; Park JH; Do YR; Kim W
    Nanotechnology; 2010 Oct; 21(42):425302. PubMed ID: 20864783
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Uniform arrays of ZnO 1D nanostructures grown on Al:ZnO seeds layers by hydrothermal method.
    Danciu AI; Musat V; Busani T; Pinto JV; Barros R; Rego AM; Ferraria AM; Carvalho PA; Martins R; Fortunato E
    J Nanosci Nanotechnol; 2013 Oct; 13(10):6701-10. PubMed ID: 24245132
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Design and fabrication of a biomimetic nanochannel for highly sensitive arginine response in serum samples.
    Song M; Sun Z; Han C; Tian D; Li H; Jiang L
    Chemistry; 2014 Jun; 20(26):7987-93. PubMed ID: 24817268
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ultra-high-aspect-orthogonal and tunable three dimensional polymeric nanochannel stack array for BioMEMS applications.
    Heo J; Kwon HJ; Jeon H; Kim B; Kim SJ; Lim G
    Nanoscale; 2014 Aug; 6(16):9681-8. PubMed ID: 24993028
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Revealing the truncated conical geometry of nanochannels in anodic aluminium oxide membranes.
    Zhang J; Zhao H; Gong M; Zhang L; Yan Z; Xie K; Fei G; Zhu X; Kong M; Zhang S; Zhang L; Lei Y
    Nanoscale; 2022 Apr; 14(14):5356-5368. PubMed ID: 35293409
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Stable and sustainable photoanodes using zinc oxide and cobalt oxide chemically gradient nanostructures for water-splitting applications.
    Nandanapalli KR; Mudusu D; Yu JS; Lee S
    J Colloid Interface Sci; 2020 Jan; 558():9-20. PubMed ID: 31580955
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Redox-Driven Reversible Gating of Solid-State Nanochannels.
    Laucirica G; Marmisollé WA; Toimil-Molares ME; Trautmann C; Azzaroni O
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):30001-30009. PubMed ID: 31335118
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Microchannel refill: a new method for fabricating 2D nanochannels in polymer substrates.
    Li JM; Liu C; Ke X; Xu Z; Duan YJ; Fan Y; Li M; Zhang KP; Wang LD
    Lab Chip; 2012 Oct; 12(20):4059-62. PubMed ID: 22941049
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fabrication of zinc oxide nanostructures using solvent-assisted capillary lithography.
    Park JW; Kim JK; Suh KY
    Nanotechnology; 2006 May; 17(10):2631-5. PubMed ID: 21727516
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nanofluidic channels by anodic bonding of amorphous silicon to glass to study ion-accumulation and ion-depletion effect.
    Datta A; Gangopadhyay S; Temkin H; Pu Q; Liu S
    Talanta; 2006 Jan; 68(3):659-65. PubMed ID: 18970372
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Phosphoprotein Detection with a Single Nanofluidic Diode Decorated with Zinc Chelates.
    Nasir S; Ali M; Ahmed I; Niemeyer CM; Ensinger W
    Chempluschem; 2020 Mar; 85(3):587-594. PubMed ID: 32216097
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High throughput fabrication of disposable nanofluidic lab-on-chip devices for single molecule studies.
    van Kan JA; Zhang C; Perumal Malar P; van der Maarel JR
    Biomicrofluidics; 2012 Sep; 6(3):36502. PubMed ID: 23898358
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Realizing a facile and environmental-friendly fabrication of high-performance multi-crystalline silicon solar cells by employing ZnO nanostructures and an Al
    Chen HY; Lu HL; Sun L; Ren QH; Zhang H; Ji XM; Liu WJ; Ding SJ; Yang XF; Zhang DW
    Sci Rep; 2016 Dec; 6():38486. PubMed ID: 27924911
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nanofluidic charged-coupled devices for controlled DNA transport and separation.
    Nouri R; Guan W
    Nanotechnology; 2021 Jun; 32(34):. PubMed ID: 34081025
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Optical nondestructive dynamic measurements of wafer-scale encapsulated nanofluidic channels.
    Liberman V; Smith M; Weaver I; Rothschild M
    Appl Opt; 2018 May; 57(15):4337-4344. PubMed ID: 29791411
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Complementary metal oxide semiconductor compatible fabrication and characterization of parylene-C covered nanofluidic channels with integrated nanoelectrodes.
    Tung CK; Riehn R; Austin RH
    Biomicrofluidics; 2009 Aug; 3(3):31101. PubMed ID: 20216956
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electrokinetic transport phenomena in nanofluidics and their applications.
    Sun Y; Jiang R; Hu L; Song Y; Li M
    Electrophoresis; 2023 Dec; 44(23):1756-1773. PubMed ID: 37438973
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nano X-ray diffractometry device for nanofluidics.
    Mawatari K; Koreeda H; Ohara K; Kohara S; Yoshida K; Yamaguchi T; Kitamori T
    Lab Chip; 2018 Apr; 18(8):1259-1264. PubMed ID: 29594269
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fabrication of two dimensional polyethylene terephthalate nanofluidic chip using hot embossing and thermal bonding technique.
    Yin Z; Cheng E; Zou H; Chen L; Xu S
    Biomicrofluidics; 2014 Nov; 8(6):066503. PubMed ID: 25553203
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Scalable integration of nano-, and microfluidics with hybrid two-photon lithography.
    Vanderpoorten O; Peter Q; Challa PK; Keyser UF; Baumberg J; Kaminski CF; Knowles TPJ
    Microsyst Nanoeng; 2019; 5():40. PubMed ID: 31636930
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.