These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 32118130)

  • 61. Electrokinetic transport through nanochannels.
    Movahed S; Li D
    Electrophoresis; 2011 Jun; 32(11):1259-67. PubMed ID: 21538982
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Clogging and Unclogging of Hydrocarbon-Contaminated Nanochannels.
    Javdani Z; Hassani N; Faraji F; Zhou R; Sun C; Radha B; Neyts E; Peeters FM; Neek-Amal M
    J Phys Chem Lett; 2022 Dec; 13(49):11454-11463. PubMed ID: 36469310
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Conductance Interplay in Ion Concentration Polarization across 1D Nanochannels: Microchannel Surface Shunt and Nanochannel Conductance.
    Ahmed Z; Bu Y; Yobas L
    Anal Chem; 2020 Jan; 92(1):1252-1259. PubMed ID: 31804063
    [TBL] [Abstract][Full Text] [Related]  

  • 64. An Integrated Glass Nanofluidic Device Enabling In-situ Electrokinetic Probing of Water Confined in a Single Nanochannel under Pressure-Driven Flow Conditions.
    Xu Y; Xu B
    Small; 2015 Dec; 11(46):6165-71. PubMed ID: 26485695
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Broadband luminescence in defect-engineered electrochemically produced porous Si/ZnO nanostructures.
    Dellis S; Pliatsikas N; Kalfagiannis N; Lidor-Shalev O; Papaderakis A; Vourlias G; Sotiropoulos S; Koutsogeorgis DC; Mastai Y; Patsalas P
    Sci Rep; 2018 May; 8(1):6988. PubMed ID: 29725079
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Pressure-driven flow control system for nanofluidic chemical process.
    Tamaki E; Hibara A; Kim HB; Tokeshi M; Kitamori T
    J Chromatogr A; 2006 Dec; 1137(2):256-62. PubMed ID: 17129585
    [TBL] [Abstract][Full Text] [Related]  

  • 67. ZnO nanocone: application in fabrication of the smallest whispering gallery optical resonator.
    Yang YH; Zhang Y; Wang NW; Wang CX; Li BJ; Yang GW
    Nanoscale; 2011 Feb; 3(2):592-7. PubMed ID: 21079824
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Borate-driven ionic rectifiers based on sugar-bearing single nanochannels.
    Cayón VM; Laucirica G; Toum Terrones Y; Cortez ML; Pérez-Mitta G; Shen J; Hess C; Toimil-Molares ME; Trautmann C; Marmisollé WA; Azzaroni O
    Nanoscale; 2021 Jul; 13(25):11232-11241. PubMed ID: 34152340
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Realization of Curved Circular Nanotubes Using In Situ Monitored Self-Assembly.
    Lin Z; Dai C; Cho JH
    Nano Lett; 2022 Mar; 22(5):2140-2146. PubMed ID: 35050632
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Fabrication of silicon dioxide submicron channels without nanolithography for single biomolecule detection.
    Cho YH; Lee SW; Kim BJ; Fujii T
    Nanotechnology; 2007 Nov; 18(46):465303. PubMed ID: 21730474
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Sensitive determination of concentration of nonfluorescent species in an extended-nano channel by differential interference contrast thermal lens microscope.
    Shimizu H; Mawatari K; Kitamori T
    Anal Chem; 2010 Sep; 82(17):7479-84. PubMed ID: 20698489
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Bioinspired Structural Colors Fabricated with ZnO Quasi-Ordered Nanostructures.
    Kim GH; An T; Lim G
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):19057-19062. PubMed ID: 28530389
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Nanofluidic diode based on branched alumina nanochannels with tunable ionic rectification.
    Kong Y; Fan X; Zhang M; Hou X; Liu Z; Zhai J; Jiang L
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7931-6. PubMed ID: 23844847
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A capacitive-pulse model for nanoparticle sensing by single conical nanochannels.
    Sheng Q; Wang X; Xie Y; Wang C; Xue J
    Nanoscale; 2016 Jan; 8(3):1565-71. PubMed ID: 26689931
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Artificial NO and Light Cooperative Nanofluidic Diode Inspired by Stomatal Closure of Guard Cells.
    Li R; Sui X; Li C; Jiang J; Zhai J; Gao L
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):3241-3247. PubMed ID: 29303249
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A nanochannel array based device for determination of the isoelectric point of confined proteins.
    Gao HL; Li CY; Ma FX; Wang K; Xu JJ; Chen HY; Xia XH
    Phys Chem Chem Phys; 2012 Jul; 14(26):9460-7. PubMed ID: 22652811
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Bionic Thermoelectric Response with Nanochannels.
    Chen K; Yao L; Su B
    J Am Chem Soc; 2019 May; 141(21):8608-8615. PubMed ID: 31067855
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Polydopamine-assisted immobilization of hierarchical zinc oxide nanostructures on electrospun nanofibrous membrane for photocatalysis and antimicrobial activity.
    Kim JH; Joshi MK; Lee J; Park CH; Kim CS
    J Colloid Interface Sci; 2018 Mar; 513():566-574. PubMed ID: 29190568
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Self-assembling silicon nanowires for device applications using the nanochannel-guided "grow-in-place" approach.
    Shan Y; Fonash SJ
    ACS Nano; 2008 Mar; 2(3):429-34. PubMed ID: 19206566
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Nanochannel system fabricated by MEMS microfabrication and atomic force microscopy.
    Wang Z; Wang D; Jiao N; Tung S; Dong Z
    IET Nanobiotechnol; 2011 Dec; 5(4):108-13. PubMed ID: 22149865
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.