These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 32118147)

  • 1. Mesoscopic Dynamical Model of Ice Crystal Nucleation Leading to Droplet Freezing.
    Wang L; Dai J; Hao P; He F; Zhang X
    ACS Omega; 2020 Feb; 5(7):3322-3332. PubMed ID: 32118147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental study on the freezing process of water droplets for ice air jet technology.
    Jingru H; Jingbin L; Zhongwei H; Kang C; Haojun X
    Sci Rep; 2024 Feb; 14(1):3259. PubMed ID: 38332116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical Simulation of Supercooled Water Droplets Impacting Ice with Rapid Crystal Growth Taken into Consideration.
    Wang T; Ai L; Zhou Y; Chen M
    Langmuir; 2020 May; 36(19):5466-5473. PubMed ID: 32383884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TinyLev acoustically levitated water: Direct observation of collective, inter-droplet effects through morphological and thermal analysis of multiple droplets.
    McElligott A; Guerra A; Wood MJ; Rey AD; Kietzig AM; Servio P
    J Colloid Interface Sci; 2022 Aug; 619():84-95. PubMed ID: 35378478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microstructure and crystal order during freezing of supercooled water drops.
    Kalita A; Mrozek-McCourt M; Kaldawi TF; Willmott PR; Loh ND; Marte S; Sierra RG; Laksmono H; Koglin JE; Hayes MJ; Paul RH; Guillet SAH; Aquila AL; Liang M; Boutet S; Stan CA
    Nature; 2023 Aug; 620(7974):557-561. PubMed ID: 37587300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homogeneous ice nucleation from aqueous inorganic/organic particles representative of biomass burning: water activity, freezing temperatures, nucleation rates.
    Knopf DA; Rigg YJ
    J Phys Chem A; 2011 Feb; 115(5):762-73. PubMed ID: 21235213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of the Ice Nucleation Activity of Ice-Binding Proteins Using a Microliter Droplet Freezing Experiment.
    Whale TF
    Methods Mol Biol; 2024; 2730():121-134. PubMed ID: 37943455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A water activity based model of heterogeneous ice nucleation kinetics for freezing of water and aqueous solution droplets.
    Knopf DA; Alpert PA
    Faraday Discuss; 2013; 165():513-34. PubMed ID: 24601020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cascade Freezing of Supercooled Water Droplet Collectives.
    Graeber G; Dolder V; Schutzius TM; Poulikakos D
    ACS Nano; 2018 Nov; 12(11):11274-11281. PubMed ID: 30354059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Latent Heat Released by Freezing Droplets during Frost Wave Propagation.
    Chavan S; Park D; Singla N; Sokalski P; Boyina K; Miljkovic N
    Langmuir; 2018 Jun; 34(22):6636-6644. PubMed ID: 29733606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental Study on Solidification Characteristics of Sessile Urine Droplets on a Horizontal Cold Plate Surface under Natural Convection.
    Dang Q; Song M; Dang C; Zhan T; Zhang L
    Langmuir; 2022 Jun; 38(25):7846-7857. PubMed ID: 35696680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Initiation of the ice phase by marine biogenic surfaces in supersaturated gas and supercooled aqueous phases.
    Alpert PA; Aller JY; Knopf DA
    Phys Chem Chem Phys; 2011 Nov; 13(44):19882-94. PubMed ID: 21912788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets.
    Mishchenko L; Hatton B; Bahadur V; Taylor JA; Krupenkin T; Aizenberg J
    ACS Nano; 2010 Dec; 4(12):7699-707. PubMed ID: 21062048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Universality of tip singularity formation in freezing water drops.
    Marín AG; Enríquez OR; Brunet P; Colinet P; Snoeijer JH
    Phys Rev Lett; 2014 Aug; 113(5):054301. PubMed ID: 25126922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homogeneous freezing of water droplets for different volumes and cooling rates.
    Shardt N; Isenrich FN; Waser B; Marcolli C; Kanji ZA; deMello AJ; Lohmann U
    Phys Chem Chem Phys; 2022 Nov; 24(46):28213-28221. PubMed ID: 36413087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the solidification of a supercooled liquid droplet lying on a surface.
    Tabakova S; Feuillebois F
    J Colloid Interface Sci; 2004 Apr; 272(1):225-34. PubMed ID: 14985041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Critical Radius of Supercooled Water Droplets: On the Transition toward Dendritic Freezing.
    Buttersack T; Bauerecker S
    J Phys Chem B; 2016 Jan; 120(3):504-12. PubMed ID: 26727582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unidirectional Freezing of Polymer Solution Droplets.
    Kharal SP; Louf JF
    Langmuir; 2024 Jan; 40(1):118-124. PubMed ID: 38154147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of a new method for the instant preparation of ice particles in ice abrasive air jet.
    Li Z; Zhu Y; Liu Y; Cao C; Wu J; Huang F
    Sci Rep; 2022 Oct; 12(1):17497. PubMed ID: 36261461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Freezing of micrometer-sized liquid droplets of pure water evaporatively cooled in a vacuum.
    Ando K; Arakawa M; Terasaki A
    Phys Chem Chem Phys; 2018 Nov; 20(45):28435-28444. PubMed ID: 30406234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.