These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 32118197)

  • 1. Supported Catalyst Deactivation by Decomposition into Single Atoms Is Suppressed by Increasing Metal Loading.
    Goodman ED; Johnston-Peck AC; Dietze EM; Wrasman CJ; Hoffman AS; Abild-Pedersen F; Bare SR; Plessow PN; Cargnello M
    Nat Catal; 2019; 2():. PubMed ID: 32118197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sintering of catalytic nanoparticles: particle migration or Ostwald ripening?
    Hansen TW; Delariva AT; Challa SR; Datye AK
    Acc Chem Res; 2013 Aug; 46(8):1720-30. PubMed ID: 23634641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The energetics of supported metal nanoparticles: relationships to sintering rates and catalytic activity.
    Campbell CT
    Acc Chem Res; 2013 Aug; 46(8):1712-9. PubMed ID: 23607711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Particle size and support effects in electrocatalysis.
    Hayden BE
    Acc Chem Res; 2013 Aug; 46(8):1858-66. PubMed ID: 23719578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Principles and Methods for the Rational Design of Core-Shell Nanoparticle Catalysts with Ultralow Noble Metal Loadings.
    Hunt ST; Román-Leshkov Y
    Acc Chem Res; 2018 May; 51(5):1054-1062. PubMed ID: 29510023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoparticle growth in supported nickel catalysts during methanation reaction--larger is better.
    Munnik P; Velthoen ME; de Jongh PE; de Jong KP; Gommes CJ
    Angew Chem Int Ed Engl; 2014 Sep; 53(36):9493-7. PubMed ID: 25044071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interface-confined oxide nanostructures for catalytic oxidation reactions.
    Fu Q; Yang F; Bao X
    Acc Chem Res; 2013 Aug; 46(8):1692-701. PubMed ID: 23458033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atom-by-atom analysis of sintering dynamics and stability of Pt nanoparticle catalysts in chemical reactions.
    Martin TE; Mitchell RW; Boyes ED; Gai PL
    Philos Trans A Math Phys Eng Sci; 2020 Dec; 378(2186):20190597. PubMed ID: 33100157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-temperature catalytic reforming of n-hexane over supported and core-shell Pt nanoparticle catalysts: role of oxide-metal interface and thermal stability.
    An K; Zhang Q; Alayoglu S; Musselwhite N; Shin JY; Somorjai GA
    Nano Lett; 2014 Aug; 14(8):4907-12. PubMed ID: 25078630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemistry of precious metal oxides relevant to heterogeneous catalysis.
    Kurzman JA; Misch LM; Seshadri R
    Dalton Trans; 2013 Oct; 42(41):14653-67. PubMed ID: 24008693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shape-controlled synthesis of Pd nanocrystals and their catalytic applications.
    Zhang H; Jin M; Xiong Y; Lim B; Xia Y
    Acc Chem Res; 2013 Aug; 46(8):1783-94. PubMed ID: 23163781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of critical particle distance for mitigating catalyst sintering.
    Yin P; Hu S; Qian K; Wei Z; Zhang LL; Lin Y; Huang W; Xiong H; Li WX; Liang HW
    Nat Commun; 2021 Aug; 12(1):4865. PubMed ID: 34381041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-atom catalysts: a new frontier in heterogeneous catalysis.
    Yang XF; Wang A; Qiao B; Li J; Liu J; Zhang T
    Acc Chem Res; 2013 Aug; 46(8):1740-8. PubMed ID: 23815772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalyst Architecture for Stable Single Atom Dispersion Enables Site-Specific Spectroscopic and Reactivity Measurements of CO Adsorbed to Pt Atoms, Oxidized Pt Clusters, and Metallic Pt Clusters on TiO
    DeRita L; Dai S; Lopez-Zepeda K; Pham N; Graham GW; Pan X; Christopher P
    J Am Chem Soc; 2017 Oct; 139(40):14150-14165. PubMed ID: 28902501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single Atom Dynamics in Chemical Reactions.
    Boyes ED; LaGrow AP; Ward MR; Mitchell RW; Gai PL
    Acc Chem Res; 2020 Feb; 53(2):390-399. PubMed ID: 32022555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards stable catalysts by controlling collective properties of supported metal nanoparticles.
    Prieto G; Zečević J; Friedrich H; de Jong KP; de Jongh PE
    Nat Mater; 2013 Jan; 12(1):34-9. PubMed ID: 23142841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Embedded phases: a way to active and stable catalysts.
    De Rogatis L; Cargnello M; Gombac V; Lorenzut B; Montini T; Fornasiero P
    ChemSusChem; 2010; 3(1):24-42. PubMed ID: 19998361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recover the activity of sintered supported catalysts by nitrogen-doped carbon atomization.
    Zhou H; Zhao Y; Xu J; Sun H; Li Z; Liu W; Yuan T; Liu W; Wang X; Cheong WC; Wang Z; Wang X; Zhao C; Yao Y; Wang W; Zhou F; Chen M; Jin B; Sun R; Liu J; Hong X; Yao T; Wei S; Luo J; Wu Y
    Nat Commun; 2020 Jan; 11(1):335. PubMed ID: 31953446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molybdenum Carbide: Controlling the Geometric and Electronic Structure of Noble Metals for the Activation of O-H and C-H Bonds.
    Deng Y; Ge Y; Xu M; Yu Q; Xiao D; Yao S; Ma D
    Acc Chem Res; 2019 Dec; 52(12):3372-3383. PubMed ID: 31411856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and stabilization of supported metal catalysts by atomic layer deposition.
    Lu J; Elam JW; Stair PC
    Acc Chem Res; 2013 Aug; 46(8):1806-15. PubMed ID: 23480735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.