These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 32118448)

  • 1. Computational Investigation of Antifouling Property of Polyacrylamide Brushes.
    Liu Y; Zhang D; Ren B; Gong X; Liu A; Chang Y; He Y; Zheng J
    Langmuir; 2020 Mar; 36(11):2757-2766. PubMed ID: 32118448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the structural dependence of carbon space lengths of poly(N-hydroxyalkyl acrylamide)-based brushes on antifouling performance.
    Yang J; Zhang M; Chen H; Chang Y; Chen Z; Zheng J
    Biomacromolecules; 2014 Aug; 15(8):2982-91. PubMed ID: 24964712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Dynamics Simulation of the Effect of Carbon Space Lengths on the Antifouling Properties of Hydroxyalkyl Acrylamides.
    Liu Y; Zhang Y; Ren B; Sun Y; He Y; Cheng F; Xu J; Zheng J
    Langmuir; 2019 Mar; 35(9):3576-3584. PubMed ID: 30721070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular simulations and understanding of antifouling zwitterionic polymer brushes.
    Liu Y; Zhang D; Ren B; Gong X; Xu L; Feng ZQ; Chang Y; He Y; Zheng J
    J Mater Chem B; 2020 May; 8(17):3814-3828. PubMed ID: 32227061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular level studies on interfacial hydration of zwitterionic and other antifouling polymers in situ.
    Leng C; Sun S; Zhang K; Jiang S; Chen Z
    Acta Biomater; 2016 Aug; 40():6-15. PubMed ID: 26923530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and Characterization of Ultralow Fouling Poly(N-acryloyl-glycinamide) Brushes.
    Yang F; Liu Y; Zhang Y; Ren B; Xu J; Zheng J
    Langmuir; 2017 Dec; 33(49):13964-13972. PubMed ID: 29160706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and characterization of antifouling poly(N-acryloylaminoethoxyethanol) with ultralow protein adsorption and cell attachment.
    Chen H; Zhang M; Yang J; Zhao C; Hu R; Chen Q; Chang Y; Zheng J
    Langmuir; 2014 Sep; 30(34):10398-409. PubMed ID: 25127733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface Preconditioning Influences the Antifouling Capabilities of Zwitterionic and Nonionic Polymer Brushes.
    Víšová I; Vrabcová M; Forinová M; Zhigunová Y; Mironov V; Houska M; Bittrich E; Eichhorn KJ; Hashim H; Schovánek P; Dejneka A; Vaisocherová-Lísalová H
    Langmuir; 2020 Jul; 36(29):8485-8493. PubMed ID: 32506911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformation Variation and Tunable Protein Adsorption through Combination of Poly(acrylic acid) and Antifouling Poly(
    Wang Z; Chen K; Hua C; Guo X
    Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32143509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Dependence of Salt-Responsive Polyzwitterionic Brushes with an Anti-Polyelectrolyte Effect.
    Xiao S; Zhang Y; Shen M; Chen F; Fan P; Zhong M; Ren B; Yang J; Zheng J
    Langmuir; 2018 Jan; 34(1):97-105. PubMed ID: 29232140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Salt-Responsive Zwitterionic Polymer Brushes with Tunable Friction and Antifouling Properties.
    Yang J; Chen H; Xiao S; Shen M; Chen F; Fan P; Zhong M; Zheng J
    Langmuir; 2015 Aug; 31(33):9125-33. PubMed ID: 26245712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of film thickness on the antifouling performance of poly(hydroxy-functional methacrylates) grafted surfaces.
    Zhao C; Li L; Wang Q; Yu Q; Zheng J
    Langmuir; 2011 Apr; 27(8):4906-13. PubMed ID: 21405141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fouling Resistance and Release Properties of Poly(sulfobetaine) Brushes with Varying Alkyl Chain Spacer Lengths and Molecular Weights.
    Khakzad F; Dewangan NK; Li TH; Safi Samghabadi F; Herrera Monegro R; Robertson ML; Conrad JC
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):2009-2019. PubMed ID: 36533943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Barnacle cement as surface anchor for "clicking" of antifouling and antimicrobial polymer brushes on stainless steel.
    Yang WJ; Cai T; Neoh KG; Kang ET; Teo SL; Rittschof D
    Biomacromolecules; 2013 Jun; 14(6):2041-51. PubMed ID: 23641901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrolysis-controlled protein adsorption and antifouling behaviors of mixed charged self-assembled monolayer: A molecular simulation study.
    Liu J; Zhou J
    Acta Biomater; 2016 Aug; 40():23-30. PubMed ID: 27134014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoparticle Adsorption on Antifouling Polymer Brushes.
    Zeuthen CM; Shahrokhtash A; Sutherland DS
    Langmuir; 2019 Nov; 35(46):14879-14889. PubMed ID: 31635462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High Antifouling Performance of Weakly Hydrophilic Polymer Brushes: A Molecular Dynamics Study.
    Yagasaki T; Matubayasi N
    Langmuir; 2024 Jul; 40(29):15046-15058. PubMed ID: 39004900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein-resistant properties of poly(N-vinylpyrrolidone)-modified gold surfaces: The advantage of bottle-brushes over linear brushes.
    Wang P; Dong Y; Zhang S; Liu W; Wu Z; Chen H
    Colloids Surf B Biointerfaces; 2019 May; 177():448-453. PubMed ID: 30798066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antifouling Surfaces Based on Fluorine-Containing Asymmetric Polymer Brushes: Effect of Chain Length of Fluorinated Side Chain.
    Sun X; Wu C; Hu J; Huang X; Lu G; Feng C
    Langmuir; 2019 Feb; 35(5):1235-1241. PubMed ID: 30558426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Design of Antifouling Polymer Brushes Using Sequence-Specific Peptoids.
    Lau KH; Sileika TS; Park SH; Sousa AM; Burch P; Szleifer I; Messersmith PB
    Adv Mater Interfaces; 2015 Jan; 2(1):. PubMed ID: 26167449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.