BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

520 related articles for article (PubMed ID: 32118585)

  • 1. Senescent T cells within suppressive tumor microenvironments: emerging target for tumor immunotherapy.
    Liu X; Hoft DF; Peng G
    J Clin Invest; 2020 Mar; 130(3):1073-1083. PubMed ID: 32118585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exhaustion and senescence: two crucial dysfunctional states of T cells in the tumor microenvironment.
    Zhao Y; Shao Q; Peng G
    Cell Mol Immunol; 2020 Jan; 17(1):27-35. PubMed ID: 31853000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TLR8 signaling enhances tumor immunity by preventing tumor-induced T-cell senescence.
    Ye J; Ma C; Hsueh EC; Dou J; Mo W; Liu S; Han B; Huang Y; Zhang Y; Varvares MA; Hoft DF; Peng G
    EMBO Mol Med; 2014 Oct; 6(10):1294-311. PubMed ID: 25231413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blockades of effector T cell senescence and exhaustion synergistically enhance antitumor immunity and immunotherapy.
    Liu X; Si F; Bagley D; Ma F; Zhang Y; Tao Y; Shaw E; Peng G
    J Immunother Cancer; 2022 Oct; 10(10):. PubMed ID: 36192086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Senescent T cells: a potential biomarker and target for cancer therapy.
    Zhang J; He T; Xue L; Guo H
    EBioMedicine; 2021 Jun; 68():103409. PubMed ID: 34049248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tumor-derived γδ regulatory T cells suppress innate and adaptive immunity through the induction of immunosenescence.
    Ye J; Ma C; Hsueh EC; Eickhoff CS; Zhang Y; Varvares MA; Hoft DF; Peng G
    J Immunol; 2013 Mar; 190(5):2403-14. PubMed ID: 23355732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment.
    Crespo J; Sun H; Welling TH; Tian Z; Zou W
    Curr Opin Immunol; 2013 Apr; 25(2):214-21. PubMed ID: 23298609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exhaustion of T lymphocytes in the tumor microenvironment: Significance and effective mechanisms.
    Davoodzadeh Gholami M; Kardar GA; Saeedi Y; Heydari S; Garssen J; Falak R
    Cell Immunol; 2017 Dec; 322():1-14. PubMed ID: 29079339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Senescence and Immunotherapy: Redundant Immunomodulatory Pathways Promote Resistance.
    Oesterreich S; Aird KM
    Cancer Immunol Res; 2023 Apr; 11(4):401-404. PubMed ID: 36826438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immune checkpoint molecules in natural killer cells as potential targets for cancer immunotherapy.
    Cao Y; Wang X; Jin T; Tian Y; Dai C; Widarma C; Song R; Xu F
    Signal Transduct Target Ther; 2020 Oct; 5(1):250. PubMed ID: 33122640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunosenescence: a key player in cancer development.
    Lian J; Yue Y; Yu W; Zhang Y
    J Hematol Oncol; 2020 Nov; 13(1):151. PubMed ID: 33168037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reprogramming lipid metabolism prevents effector T cell senescence and enhances tumor immunotherapy.
    Liu X; Hartman CL; Li L; Albert CJ; Si F; Gao A; Huang L; Zhao Y; Lin W; Hsueh EC; Shen L; Shao Q; Hoft DF; Ford DA; Peng G
    Sci Transl Med; 2021 Mar; 13(587):. PubMed ID: 33790024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oncology meets immunology: the cancer-immunity cycle.
    Chen DS; Mellman I
    Immunity; 2013 Jul; 39(1):1-10. PubMed ID: 23890059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Notch Signaling in Myeloid Cells as a Regulator of Tumor Immune Responses.
    Hossain F; Majumder S; Ucar DA; Rodriguez PC; Golde TE; Minter LM; Osborne BA; Miele L
    Front Immunol; 2018; 9():1288. PubMed ID: 29915603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TLR-mediated metabolic reprogramming in the tumor microenvironment: potential novel strategies for cancer immunotherapy.
    Huang L; Xu H; Peng G
    Cell Mol Immunol; 2018 May; 15(5):428-437. PubMed ID: 29553135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oncogene-induced senescence: From biology to therapy.
    Zhu H; Blake S; Kusuma FK; Pearson RB; Kang J; Chan KT
    Mech Ageing Dev; 2020 Apr; 187():111229. PubMed ID: 32171687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Evolving Role of CD8
    Huff WX; Kwon JH; Henriquez M; Fetcko K; Dey M
    Int J Mol Sci; 2019 Jun; 20(11):. PubMed ID: 31181772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inflammatory signaling and cellular senescence.
    Ren JL; Pan JS; Lu YP; Sun P; Han J
    Cell Signal; 2009 Mar; 21(3):378-83. PubMed ID: 18992324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic Regulation of Tregs in Cancer: Opportunities for Immunotherapy.
    Wang H; Franco F; Ho PC
    Trends Cancer; 2017 Aug; 3(8):583-592. PubMed ID: 28780935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emerging role of tumor-derived extracellular vesicles in T cell suppression and dysfunction in the tumor microenvironment.
    Ma F; Vayalil J; Lee G; Wang Y; Peng G
    J Immunother Cancer; 2021 Oct; 9(10):. PubMed ID: 34642246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.