These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 32118883)

  • 1. Global polarizability matrix method for efficient modeling of light scattering by dense ensembles of non-spherical particles in stratified media.
    Bertrand M; Devilez A; Hugonin JP; Lalanne P; Vynck K
    J Opt Soc Am A Opt Image Sci Vis; 2020 Jan; 37(1):70-83. PubMed ID: 32118883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulating the scanning of a focused beam through scattering media using a numerical solution of Maxwell's equations.
    Elmaklizi A; Schäfer J; Kienle A
    J Biomed Opt; 2014 Jul; 19(7):071404. PubMed ID: 24395650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First-principles modeling of electromagnetic scattering by discrete and discretely heterogeneous random media.
    Mishchenko MI; Dlugach JM; Yurkin MA; Bi L; Cairns B; Liu L; Panetta RL; Travis LD; Yang P; Zakharova NT
    Phys Rep; 2016 May; 632():1-75. PubMed ID: 29657355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scattering and absorption in dense discrete random media of irregular particles.
    Markkanen J; Väisänen T; Penttilä A; Muinonen K
    Opt Lett; 2018 Jun; 43(12):2925-2928. PubMed ID: 29905725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Raman and fluorescent scattering by molecules embedded in dielectric cylinders.
    Chew H; Cooke DD; Kerker M
    Appl Opt; 1980 Jan; 19(1):44-52. PubMed ID: 20216792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scattering of a zero-order Bessel beam by arbitrarily shaped homogeneous dielectric particles.
    Cui Z; Han Y; Han L
    J Opt Soc Am A Opt Image Sci Vis; 2013 Oct; 30(10):1913-20. PubMed ID: 24322844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computation of radiation pressure force on arbitrary shaped homogenous particles by multilevel fast multipole algorithm.
    Yang M; Ren KF; Gou M; Sheng X
    Opt Lett; 2013 Jun; 38(11):1784-6. PubMed ID: 23722743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light scattering by an arbitrary particle: a physical reformulation of the coupled dipole method.
    Singham SB; Bohren CF
    Opt Lett; 1987 Jan; 12(1):10-2. PubMed ID: 19738776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. General solution to the inverse near-forward-scattering particle-sizing problem in multiple-scattering environments: theory.
    Hirleman ED
    Appl Opt; 1991 Nov; 30(33):4832-8. PubMed ID: 20717286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Image method for electrostatic energy of polarizable dipolar spheres.
    Gustafson KS; Xu G; Freed KF; Qin J
    J Chem Phys; 2017 Aug; 147(6):064908. PubMed ID: 28810793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical simulation of particulate flows using a hybrid of finite difference and boundary integral methods.
    Bhattacharya A; Kesarkar T
    Phys Rev E; 2016 Oct; 94(4-1):043309. PubMed ID: 27841548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mueller matrix holographic method for small particle characterization: theory and numerical studies.
    Gao M; Yang P; McKee D; Kattawar GW
    Appl Opt; 2013 Jul; 52(21):5289-96. PubMed ID: 23872778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffraction effects in the propagation of radiation in polarizable layers.
    Dallacasa V
    J Nanosci Nanotechnol; 2008 Feb; 8(2):595-601. PubMed ID: 18464376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induced-charge electroosmotic flow around dielectric particles in uniform electric field.
    Zhang F; Li D
    J Colloid Interface Sci; 2013 Nov; 410():102-10. PubMed ID: 24034219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separation of dielectric Janus particles based on polarizability-dependent induced-charge electroosmotic flow.
    Zhang F; Li D
    J Colloid Interface Sci; 2015 Jun; 448():297-305. PubMed ID: 25746182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scattering analysis of two-dimensional Airy beams by typical non-spherical particles.
    Cui Z; Wang J; Ma W; Wu F
    Appl Opt; 2022 Oct; 61(28):8508-8514. PubMed ID: 36256167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computation of radiation pressure force exerted on arbitrary shaped homogeneous particles by high-order Bessel vortex beams using MLFMA.
    Yang M; Wu Y; Ren KF; Sheng X
    Opt Express; 2016 Nov; 24(24):27979-27992. PubMed ID: 27906365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light-opals interaction modeling by direct numerical solution of Maxwell's equations.
    Vaccari A; Lesina AC; Cristoforetti L; Chiappini A; Crema L; Calliari L; Ramunno L; Berini P; Ferrari M
    Opt Express; 2014 Nov; 22(22):27739-49. PubMed ID: 25401918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical modeling of light propagation in a hexagonal array of dielectric cylinders.
    Fischer L; Zvyagin A; Plakhotnik T; Vorobyev M
    J Opt Soc Am A Opt Image Sci Vis; 2010 Apr; 27(4):865-72. PubMed ID: 20360828
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.