These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 32118954)

  • 1. Direct and indirect optical absorptions of cubic BAs and BSb.
    Ge Y; Wan W; Guo X; Liu Y
    Opt Express; 2020 Jan; 28(1):238-248. PubMed ID: 32118954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High Thermal Conductivity of Wurtzite Boron Arsenide Predicted by Including Four-Phonon Scattering with Machine Learning Potential.
    Liu Z; Yang X; Zhang B; Li W
    ACS Appl Mater Interfaces; 2021 Nov; 13(45):53409-53415. PubMed ID: 34415723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite-momentum excitons and the role of electron-phonon couplings in the electronic and phonon transport properties of boron arsenide.
    Mei H; Xia Y; Zhang Y; Wu Y; Chen Y; Ma C; Kong M; Peng L; Zhu H; Zhang H
    Phys Chem Chem Phys; 2022 Apr; 24(16):9384-9393. PubMed ID: 35383793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative study of the thermoelectric performance of graphene-like BX (X  =  P, As, Sb) monolayers.
    Zhou ZZ; Liu HJ; Fan DD; Cao GH
    J Phys Condens Matter; 2019 Sep; 31(38):385701. PubMed ID: 31174197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ellipsometric and first-principles study on temperature-dependent UV-Vis dielectric functions of GaN.
    Cheng T; Fei T; Zhang W; Yang JY; Liu L
    Appl Opt; 2021 Aug; 60(23):6869-6877. PubMed ID: 34613168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First-principles calculations of interfacial thermal transport properties between SiC/Si substrates and compounds of boron with selected group V elements.
    Sun Z; Yuan K; Zhang X; Tang D
    Phys Chem Chem Phys; 2019 Mar; 21(11):6011-6020. PubMed ID: 30810132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-monotonic pressure dependence of the thermal conductivity of boron arsenide.
    Ravichandran NK; Broido D
    Nat Commun; 2019 Feb; 10(1):827. PubMed ID: 30783095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental observation of high thermal conductivity in boron arsenide.
    Kang JS; Li M; Wu H; Nguyen H; Hu Y
    Science; 2018 Aug; 361(6402):575-578. PubMed ID: 29976798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pressure-Dependent Behavior of Defect-Modulated Band Structure in Boron Arsenide.
    Meng X; Singh A; Juneja R; Zhang Y; Tian F; Ren Z; Singh AK; Shi L; Lin JF; Wang Y
    Adv Mater; 2020 Nov; 32(45):e2001942. PubMed ID: 33015896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring Multifunctional Applications of Hexagonal Boron Arsenide Sheet: A DFT Study.
    Manoharan K; Subramanian V
    ACS Omega; 2018 Aug; 3(8):9533-9543. PubMed ID: 31459085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High ambipolar mobility in cubic boron arsenide.
    Shin J; Gamage GA; Ding Z; Chen K; Tian F; Qian X; Zhou J; Lee H; Zhou J; Shi L; Nguyen T; Han F; Li M; Broido D; Schmidt A; Ren Z; Chen G
    Science; 2022 Jul; 377(6604):437-440. PubMed ID: 35862526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unusual high thermal conductivity in boron arsenide bulk crystals.
    Tian F; Song B; Chen X; Ravichandran NK; Lv Y; Chen K; Sullivan S; Kim J; Zhou Y; Liu TH; Goni M; Ding Z; Sun J; Udalamatta Gamage GAG; Sun H; Ziyaee H; Huyan S; Deng L; Zhou J; Schmidt AJ; Chen S; Chu CW; Huang PY; Broido D; Shi L; Chen G; Ren Z
    Science; 2018 Aug; 361(6402):582-585. PubMed ID: 29976797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High thermal conductivity in cubic boron arsenide crystals.
    Li S; Zheng Q; Lv Y; Liu X; Wang X; Huang PY; Cahill DG; Lv B
    Science; 2018 Aug; 361(6402):579-581. PubMed ID: 29976796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unified theory of electron-phonon renormalization and phonon-assisted optical absorption.
    Patrick CE; Giustino F
    J Phys Condens Matter; 2014 Sep; 26(36):365503. PubMed ID: 25134725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phonon-assisted optical absorption in silicon from first principles.
    Noffsinger J; Kioupakis E; Van de Walle CG; Louie SG; Cohen ML
    Phys Rev Lett; 2012 Apr; 108(16):167402. PubMed ID: 22680754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High ambipolar mobility in cubic boron arsenide revealed by transient reflectivity microscopy.
    Yue S; Tian F; Sui X; Mohebinia M; Wu X; Tong T; Wang Z; Wu B; Zhang Q; Ren Z; Bao J; Liu X
    Science; 2022 Jul; 377(6604):433-436. PubMed ID: 35862517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First-principle study of seven allotropes of arsenene and antimonene: thermodynamic, electronic and optical properties.
    Zhang B; Zhang H; Lin J; Cheng X
    Phys Chem Chem Phys; 2018 Dec; 20(48):30257-30266. PubMed ID: 30483679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First-principles determination of ultrahigh thermal conductivity of boron arsenide: a competitor for diamond?
    Lindsay L; Broido DA; Reinecke TL
    Phys Rev Lett; 2013 Jul; 111(2):025901. PubMed ID: 23889420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep-level impurities hyperdoped diamond: a first-principles calculations.
    Dong X; Wang T; An Y; Wang Y
    J Phys Condens Matter; 2021 Mar; 33(11):115502. PubMed ID: 33339017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activated Lone-Pair Electrons Lead to Low Lattice Thermal Conductivity: A Case Study of Boron Arsenide.
    Qin G; Xu J; Wang H; Qin Z; Hu M
    J Phys Chem Lett; 2023 Jan; 14(1):139-147. PubMed ID: 36577014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.