These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 32118993)

  • 1. Ultrabroadband light absorption based on photonic topological transitions in hyperbolic metamaterials.
    Jiang X; Wang T; Zhong Q; Yan R; Huang X
    Opt Express; 2020 Jan; 28(1):705-714. PubMed ID: 32118993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanostructured multilayer hyperbolic metamaterials for high efficiency and selective solar absorption.
    Jiang X; Zhou L; Hu J; Wang T
    Opt Express; 2022 Mar; 30(7):11504-11513. PubMed ID: 35473093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A near-ideal solar selective absorber with strong broadband optical absorption from UV to NIR.
    Jiang X; Wang T; Zhong Q; Yan R; Huang X
    Nanotechnology; 2020 Jul; 31(31):315202. PubMed ID: 32289755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable optical angular selectivity in hyperbolic metamaterial via photonic topological transitions.
    Jiang X; Wang T; Cheng L; Zhong Q; Yan R; Huang X
    Opt Express; 2019 Jun; 27(13):18970-18979. PubMed ID: 31252831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical study of a wide-angle polarization-independent ultra-broadband efficient selective metamaterial absorber for near-ideal solar thermal energy conversion.
    Wu D; Liu C; Liu Y; Xu Z; Yu Z; Yu L; Chen L; Ma R; Zhang J; Ye H
    RSC Adv; 2018 Jun; 8(38):21054-21064. PubMed ID: 35539953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-ideal optical metamaterial absorbers with super-octave bandwidth.
    Bossard JA; Lin L; Yun S; Liu L; Werner DH; Mayer TS
    ACS Nano; 2014 Feb; 8(2):1517-24. PubMed ID: 24472069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient Thermal-Light Interconversions Based on Optical Topological Transition in the Metal-Dielectric Multilayered Metamaterials.
    Zhou J; Chen X; Guo LJ
    Adv Mater; 2016 Apr; 28(15):3017-23. PubMed ID: 26891165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrabroadband metamaterial absorbers from ultraviolet to near-infrared based on multiple resonances for harvesting solar energy.
    Feng H; Li X; Wang M; Xia F; Zhang K; Kong W; Dong L; Yun M
    Opt Express; 2021 Feb; 29(4):6000-6010. PubMed ID: 33726131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra-wideband and Polarization-Insensitive Perfect Absorber Using Multilayer Metamaterials, Lumped Resistors, and Strong Coupling Effects.
    Li SJ; Wu PX; Xu HX; Zhou YL; Cao XY; Han JF; Zhang C; Yang HH; Zhang Z
    Nanoscale Res Lett; 2018 Nov; 13(1):386. PubMed ID: 30498863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable angle-selective optical transparency induced by photonic topological transition in Dirac semimetals-based hyperbolic metamaterials.
    Wang Q; Zhang L; Cai X; Cencillo-Abad P; Ou JY
    Opt Express; 2022 Jun; 30(13):23102-23114. PubMed ID: 36224997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical analysis of an ultra-wideband metamaterial absorber with high absorptivity from visible light to near-infrared.
    Liu J; Ma WZ; Chen W; Yu GX; Chen YS; Deng XC; Yang CF
    Opt Express; 2020 Aug; 28(16):23748-23760. PubMed ID: 32752367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Omnidirectional nonreciprocal absorber realized by the magneto-optical hypercrystal.
    Hu S; Song J; Guo Z; Jiang H; Deng F; Dong L; Chen H
    Opt Express; 2022 Mar; 30(7):12104-12119. PubMed ID: 35473139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rough metal and dielectric layers make an even better hyperbolic metamaterial absorber.
    Andryieuski A; Zhukovsky SV; Lavrinenko AV
    Opt Express; 2014 Jun; 22(12):14975-80. PubMed ID: 24977591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Invisible Hyperbolic Metamaterial Nanotube at Visible Frequency.
    Kim KH; No YS; Chang S; Choi JH; Park HG
    Sci Rep; 2015 Nov; 5():16027. PubMed ID: 26522815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designing ultrabroadband absorbers based on Bloch theorem and optical topological transition.
    Kan YH; Zhao CY; Fang X; Wang BX
    Opt Lett; 2017 May; 42(10):1879-1882. PubMed ID: 28504749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A tunable wide-angle narrowband perfect absorber based on an optical cavity containing hyperbolic metamaterials.
    Xie Z; Zhu X; Deng Y; Chen Y
    Phys Chem Chem Phys; 2023 Nov; 25(42):29358-29364. PubMed ID: 37877334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiplication of photonic band gaps in one-dimensional photonic crystals by using hyperbolic metamaterial in IR range.
    Mohamed AG; Sabra W; Mehaney A; Aly AH; Elsayed HA
    Sci Rep; 2023 Jan; 13(1):324. PubMed ID: 36609630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photonic Metamaterial Absorbers: Morphology Engineering and Interdisciplinary Applications.
    Feng L; Huo P; Liang Y; Xu T
    Adv Mater; 2020 Jul; 32(27):e1903787. PubMed ID: 31566259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays.
    Yin X; Long C; Li J; Zhu H; Chen L; Guan J; Li X
    Sci Rep; 2015 Oct; 5():15367. PubMed ID: 26477740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polarization Independent Metamaterial Absorber with Anti-Reflection Coating Nanoarchitectonics for Visible and Infrared Window Applications.
    Musa A; Hakim ML; Alam T; Islam MT; Alshammari AS; Mat K; M MS; Almalki SHA; Islam MS
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.