BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 32119073)

  • 1. Feature set optimization in biomarker discovery from genome-scale data.
    Fortino V; Scala G; Greco D
    Bioinformatics; 2020 Jun; 36(11):3393-3400. PubMed ID: 32119073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved NSGA-II algorithms for multi-objective biomarker discovery.
    Cattelani L; Fortino V
    Bioinformatics; 2022 Sep; 38(Suppl_2):ii20-ii26. PubMed ID: 36124794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of five supervised feature selection algorithms leading to top features and gene signatures from multi-omics data in cancer.
    Bhadra T; Mallik S; Hasan N; Zhao Z
    BMC Bioinformatics; 2022 Apr; 23(Suppl 3):153. PubMed ID: 35484501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Min-redundancy and max-relevance multi-view feature selection for predicting ovarian cancer survival using multi-omics data.
    El-Manzalawy Y; Hsieh TY; Shivakumar M; Kim D; Honavar V
    BMC Med Genomics; 2018 Sep; 11(Suppl 3):71. PubMed ID: 30255801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global proteomics profiling improves drug sensitivity prediction: results from a multi-omics, pan-cancer modeling approach.
    Ali M; Khan SA; Wennerberg K; Aittokallio T
    Bioinformatics; 2018 Apr; 34(8):1353-1362. PubMed ID: 29186355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MEvA-X: a hybrid multiobjective evolutionary tool using an XGBoost classifier for biomarkers discovery on biomedical datasets.
    Panagiotopoulos K; Korfiati A; Theofilatos K; Hurwitz P; Deriu MA; Mavroudi S
    Bioinformatics; 2023 Jul; 39(7):. PubMed ID: 37326976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. -Omics biomarker identification pipeline for translational medicine.
    Bravo-Merodio L; Williams JA; Gkoutos GV; Acharjee A
    J Transl Med; 2019 May; 17(1):155. PubMed ID: 31088492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying interactions in omics data for clinical biomarker discovery using symbolic regression.
    Christensen NJ; Demharter S; Machado M; Pedersen L; Salvatore M; Stentoft-Hansen V; Iglesias MT
    Bioinformatics; 2022 Aug; 38(15):3749-3758. PubMed ID: 35731214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MOLI: multi-omics late integration with deep neural networks for drug response prediction.
    Sharifi-Noghabi H; Zolotareva O; Collins CC; Ester M
    Bioinformatics; 2019 Jul; 35(14):i501-i509. PubMed ID: 31510700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NCC-AUC: an AUC optimization method to identify multi-biomarker panel for cancer prognosis from genomic and clinical data.
    Zou M; Liu Z; Zhang XS; Wang Y
    Bioinformatics; 2015 Oct; 31(20):3330-8. PubMed ID: 26092859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robustness of chemometrics-based feature selection methods in early cancer detection and biomarker discovery.
    Lee HW; Lawton C; Na YJ; Yoon S
    Stat Appl Genet Mol Biol; 2013 Mar; 12(2):207-23. PubMed ID: 23502343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A machine learning heuristic to identify biologically relevant and minimal biomarker panels from omics data.
    Swan AL; Stekel DJ; Hodgman C; Allaway D; Alqahtani MH; Mobasheri A; Bacardit J
    BMC Genomics; 2015; 16 Suppl 1(Suppl 1):S2. PubMed ID: 25923811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MERIDA: a novel Boolean logic-based integer linear program for personalized cancer therapy.
    Lenhof K; Gerstner N; Kehl T; Eckhart L; Schneider L; Lenhof HP
    Bioinformatics; 2021 Nov; 37(21):3881-3888. PubMed ID: 34352075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FSR: feature set reduction for scalable and accurate multi-class cancer subtype classification based on copy number.
    Wong G; Leckie C; Kowalczyk A
    Bioinformatics; 2012 Jan; 28(2):151-9. PubMed ID: 22110244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust biomarker discovery for hepatocellular carcinoma from high-throughput data by multiple feature selection methods.
    Zhang Z; Liu ZP
    BMC Med Genomics; 2021 Aug; 14(Suppl 1):112. PubMed ID: 34433487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-kernel linear mixed model with adaptive lasso for prediction analysis on high-dimensional multi-omics data.
    Li J; Lu Q; Wen Y
    Bioinformatics; 2020 Mar; 36(6):1785-1794. PubMed ID: 31693075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CaPSSA: visual evaluation of cancer biomarker genes for patient stratification and survival analysis using mutation and expression data.
    Jang Y; Seo J; Jang I; Lee B; Kim S; Lee S
    Bioinformatics; 2019 Dec; 35(24):5341-5343. PubMed ID: 31228188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Driver network as a biomarker: systematic integration and network modeling of multi-omics data to derive driver signaling pathways for drug combination prediction.
    Huang L; Brunell D; Stephan C; Mancuso J; Yu X; He B; Thompson TC; Zinner R; Kim J; Davies P; Wong STC
    Bioinformatics; 2019 Oct; 35(19):3709-3717. PubMed ID: 30768150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Consistent metagenomic biomarker detection via robust PCA.
    Alshawaqfeh M; Bashaireh A; Serpedin E; Suchodolski J
    Biol Direct; 2017 Jan; 12(1):4. PubMed ID: 28143486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pareto Optimization Identifies Diverse Set of Phosphorylation Signatures Predicting Response to Treatment with Dasatinib.
    Klammer M; Dybowski JN; Hoffmann D; Schaab C
    PLoS One; 2015; 10(6):e0128542. PubMed ID: 26083411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.