BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 32119188)

  • 1. Bridged Stilbenes: AIEgens Designed via a Simple Strategy to Control the Non-radiative Decay Pathway.
    Iwai R; Suzuki S; Sasaki S; Sairi AS; Igawa K; Suenobu T; Morokuma K; Konishi GI
    Angew Chem Int Ed Engl; 2020 Jun; 59(26):10566-10573. PubMed ID: 32119188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Principles of Aggregation-Induced Emission: Design of Deactivation Pathways for Advanced AIEgens and Applications.
    Suzuki S; Sasaki S; Sairi AS; Iwai R; Tang BZ; Konishi GI
    Angew Chem Int Ed Engl; 2020 Jun; 59(25):9856-9867. PubMed ID: 32154630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein confinement fine-tunes aggregation-induced emission in human serum albumin.
    Liang R; Das D; Bakhtiiari A
    Phys Chem Chem Phys; 2021 Dec; 23(46):26263-26272. PubMed ID: 34787133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical study of radiative and non-radiative decay processes in pyrazine derivatives.
    Deng C; Niu Y; Peng Q; Qin A; Shuai Z; Tang BZ
    J Chem Phys; 2011 Jul; 135(1):014304. PubMed ID: 21744899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring Potential Energy Surfaces for Aggregation-Induced Emission-From Solution to Crystal.
    Crespo-Otero R; Li Q; Blancafort L
    Chem Asian J; 2019 Mar; 14(6):700-714. PubMed ID: 30548109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanochromic Luminescence of Aggregation-Induced Emission Luminogens.
    Dong YQ; Lam JW; Tang BZ
    J Phys Chem Lett; 2015 Sep; 6(17):3429-36. PubMed ID: 26268912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using the isotope effect to probe an aggregation induced emission mechanism: theoretical prediction and experimental validation.
    Zhang T; Peng Q; Quan C; Nie H; Niu Y; Xie Y; Zhao Z; Tang BZ; Shuai Z
    Chem Sci; 2016 Aug; 7(8):5573-5580. PubMed ID: 30034698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tetraphenylpyrimidine-Based AIEgens: Facile Preparation, Theoretical Investigation and Practical Application.
    Liu J; Pan L; Peng Q; Qin A
    Molecules; 2017 Oct; 22(10):. PubMed ID: 28994729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecularly engineered AIEgens with enhanced quantum and singlet-oxygen yield for mitochondria-targeted imaging and photodynamic therapy.
    Xu FZ; Zhu L; Han HH; Zou JW; Zang Y; Li J; James TD; He XP; Wang CY
    Chem Sci; 2022 Aug; 13(32):9373-9380. PubMed ID: 36092996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aggregation-Induced Emission (AIE) Dots: Emerging Theranostic Nanolights.
    Feng G; Liu B
    Acc Chem Res; 2018 Jun; 51(6):1404-1414. PubMed ID: 29733571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aggregation-induced emission and the working mechanism of 1-benzoyl and 1-benzyl pyrene derivatives.
    Zhang Y; He B; Liu J; Hu S; Pan L; Zhao Z; Tang BZ
    Phys Chem Chem Phys; 2018 Apr; 20(15):9922-9929. PubMed ID: 29619478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Consideration of Molecular Structure in the Excited State to Design New Luminogens with Aggregation-Induced Emission.
    Kokado K; Sada K
    Angew Chem Int Ed Engl; 2019 Jun; 58(26):8632-8639. PubMed ID: 30811777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural Engineering of Red Luminogens to Realize High Emission Efficiency through ACQ-to-AIE Transformation.
    Sun H; He T; Zhang C; Wang S; Dong L; Li Z; Gu PY; Wang Z; Long G; Zhang Q
    Chemistry; 2023 May; 29(26):e202300029. PubMed ID: 36806228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and process controls of AIEgens for NIR-II theranostics.
    Liu S; Li Y; Kwok RTK; Lam JWY; Tang BZ
    Chem Sci; 2020 Jun; 12(10):3427-3436. PubMed ID: 34163616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wettability with Aggregation-Induced Emission Luminogens.
    Wang Z; Heng L; Jiang L
    Macromol Rapid Commun; 2017 Sep; 38(18):. PubMed ID: 28306167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cationic Tricyclic AIEgens for Concomitant Bacterial Discrimination and Inhibition.
    Wang B; Wu H; Hu R; Liu X; Liu Z; Wang Z; Qin A; Tang BZ
    Adv Healthc Mater; 2021 Jun; 10(12):e2100136. PubMed ID: 34019741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppression of reversible photocyclization reaction induced fluorescence enhancement: a theoretical study.
    Wei H; Zeng Y; Li Q; Zheng X
    Phys Chem Chem Phys; 2022 Oct; 24(41):25487-25494. PubMed ID: 36254622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corannulene-Incorporated AIE Nanodots with Highly Suppressed Nonradiative Decay for Boosted Cancer Phototheranostics In Vivo.
    Gu X; Zhang X; Ma H; Jia S; Zhang P; Zhao Y; Liu Q; Wang J; Zheng X; Lam JWY; Ding D; Tang BZ
    Adv Mater; 2018 Jun; 30(26):e1801065. PubMed ID: 29766581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bio-/Chemosensors and Imaging with Aggregation-Induced Emission Luminogens.
    Zhan C; You X; Zhang G; Zhang D
    Chem Rec; 2016 Aug; 16(4):2142-60. PubMed ID: 27427427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyyne bridged AIE luminogens with red emission: design, synthesis, properties and applications.
    Zhao Z; Su H; Zhang P; Cai Y; Kwok RTK; Chen Y; He Z; Gu X; He X; Sung HHY; Willimas ID; Lam JWY; Zhang Z; Tang BZ
    J Mater Chem B; 2017 Feb; 5(8):1650-1657. PubMed ID: 32263937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.