BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 32119778)

  • 21. Tunable Three-Dimensional Plasmonic Arrays for Large Near-Infrared Fluorescence Enhancement.
    Pang JS; Theodorou IG; Centeno A; Petrov PK; Alford NM; Ryan MP; Xie F
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23083-23092. PubMed ID: 31252484
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Promoting Plasmonic Hot Hole Extraction and Photothermal Effect for the Oxygen Evolution Reactions.
    Tang T; Li M; Liang Z; Hu YW; Chen J; Wang G; Chen J; Ye KH; Lin Z
    Chemistry; 2023 Jun; 29(34):e202300225. PubMed ID: 36967610
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor.
    Cushing SK; Li J; Meng F; Senty TR; Suri S; Zhi M; Li M; Bristow AD; Wu N
    J Am Chem Soc; 2012 Sep; 134(36):15033-41. PubMed ID: 22891916
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Self-Optimized Catalysts: Hot-Electron Driven Photosynthesis of Catalytic Photocathodes.
    Kontoleta E; Askes SHC; Garnett EC
    ACS Appl Mater Interfaces; 2019 Oct; 11(39):35713-35719. PubMed ID: 31475816
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Localized surface plasmon resonance for enhanced electrocatalysis.
    Zhao J; Xue S; Ji R; Li B; Li J
    Chem Soc Rev; 2021 Nov; 50(21):12070-12097. PubMed ID: 34533143
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Catalytic Boosting by Surface-Plasmon-Driven Hot Electrons on Antenna-Reactor Schottky Nanodiodes.
    Kang M; Jeon B; Park JY
    Nano Lett; 2023 Jun; 23(11):5116-5122. PubMed ID: 37265068
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hot plasmonic electron-driven catalytic reactions on patterned metal-insulator-metal nanostructures.
    Kim SM; Lee C; Goddeti KC; Park JY
    Nanoscale; 2017 Aug; 9(32):11667-11677. PubMed ID: 28776052
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In situ SERS study of surface plasmon resonance enhanced photocatalytic reactions using bifunctional Au@CdS core-shell nanocomposites.
    Yang JL; Xu J; Ren H; Sun L; Xu QC; Zhang H; Li JF; Tian ZQ
    Nanoscale; 2017 May; 9(19):6254-6258. PubMed ID: 28463374
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plasmonic Coupling Architectures for Enhanced Photocatalysis.
    Liu D; Xue C
    Adv Mater; 2021 Nov; 33(46):e2005738. PubMed ID: 33891777
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Light-Enhanced Carbon Dioxide Activation and Conversion by Effective Plasmonic Coupling Effect of Pt and Au Nanoparticles.
    Song H; Meng X; Dao TD; Zhou W; Liu H; Shi L; Zhang H; Nagao T; Kako T; Ye J
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):408-416. PubMed ID: 29226665
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Catalytic and photocatalytic transformations on metal nanoparticles with targeted geometric and plasmonic properties.
    Linic S; Christopher P; Xin H; Marimuthu A
    Acc Chem Res; 2013 Aug; 46(8):1890-9. PubMed ID: 23750539
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prolonged hot electron dynamics in plasmonic-metal/semiconductor heterostructures with implications for solar photocatalysis.
    DuChene JS; Sweeny BC; Johnston-Peck AC; Su D; Stach EA; Wei WD
    Angew Chem Int Ed Engl; 2014 Jul; 53(30):7887-91. PubMed ID: 24920227
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plasmon resonant enhancement of photocatalytic water splitting under visible illumination.
    Liu Z; Hou W; Pavaskar P; Aykol M; Cronin SB
    Nano Lett; 2011 Mar; 11(3):1111-6. PubMed ID: 21319840
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plasmonic-enhanced photocatalysis reactions using gold nanostructured films.
    Ibrahem MA; Rasheed BG; Mahdi RI; Khazal TM; Omar MM; O'Neill M
    RSC Adv; 2020 Jun; 10(38):22324-22330. PubMed ID: 35514594
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficient photothermal-assisted photocatalytic hydrogen production over a plasmonic CuNi bimetal cocatalyst.
    Li J; Huang Y; Luo B; Ma L; Jing D
    J Colloid Interface Sci; 2022 Nov; 626():975-984. PubMed ID: 35839678
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hot Electron-Driven Photocatalysis Using Sub-5 nm Gap Plasmonic Nanofinger Arrays.
    Wang Y; Chen B; Meng D; Song B; Liu Z; Hu P; Yang H; Ou TH; Liu F; Pi H; Pi I; Pi I; Wu W
    Nanomaterials (Basel); 2022 Oct; 12(21):. PubMed ID: 36364506
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of Femtosecond Pulsed Laser-Induced Atomic Redistribution in Bimetallic Au-Pd Nanorods on Optoelectronic and Catalytic Properties.
    Nazemi M; Panikkanvalappil SR; Liao CK; Mahmoud MA; El-Sayed MA
    ACS Nano; 2021 Jun; 15(6):10241-10252. PubMed ID: 34032116
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantifying Wavelength-Dependent Plasmonic Hot Carrier Energy Distributions at Metal/Semiconductor Interfaces.
    Yu Y; Wijesekara KD; Xi X; Willets KA
    ACS Nano; 2019 Mar; 13(3):3629-3637. PubMed ID: 30807695
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plasmonic photocatalysis.
    Zhang X; Chen YL; Liu RS; Tsai DP
    Rep Prog Phys; 2013 Apr; 76(4):046401. PubMed ID: 23455654
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.