BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 32120154)

  • 1. Direct and residual impacts of zeolite on the remediation of harmful elements in multiple contaminated soils using cabbage in rotation with corn.
    Lahori AH; Mierzwa-Hersztek M; Demiraj E; Sajjad RU; Ali I; Shehnaz H; Aziz A; Zuberi MH; Pirzada AM; Hassan K; Zhang Z
    Chemosphere; 2020 Jul; 250():126317. PubMed ID: 32120154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beneficial effects of tobacco biochar combined with mineral additives on (im)mobilization and (bio)availability of Pb, Cd, Cu and Zn from Pb/Zn smelter contaminated soils.
    Lahori AH; Zhang Z; Guo Z; Li R; Mahar A; Awasthi MK; Wang P; Shen F; Kumbhar F; Sial TA; Zhao J; Guo D
    Ecotoxicol Environ Saf; 2017 Nov; 145():528-538. PubMed ID: 28787614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Availability of heavy metals to cabbage grown in sewage sludge amended calcareous soils under greenhouse conditions.
    Jalali M; Imanifard A
    Int J Phytoremediation; 2021; 23(14):1525-1537. PubMed ID: 33945349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined effects of carbonaceous-immobilizing agents and subsequent sulphur application on maize phytoextraction efficiency in highly contaminated soil.
    Kroulíková S; Mohnke S; Wenzel WW; Tejnecký V; Száková J; Mercl F; Tlustoš P
    Environ Sci Pollut Res Int; 2019 Jul; 26(20):20866-20878. PubMed ID: 31111391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential use of lime combined with additives on (im)mobilization and phytoavailability of heavy metals from Pb/Zn smelter contaminated soils.
    Hussain Lahori A; Zhang Z; Guo Z; Mahar A; Li R; Kumar Awasthi M; Ali Sial T; Kumbhar F; Wang P; Shen F; Zhao J; Huang H
    Ecotoxicol Environ Saf; 2017 Nov; 145():313-323. PubMed ID: 28756252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Residual effects of tobacco biochar along with different fixing agents on stabilization of trace elements in multi-metal contaminated soils.
    Lahori AH; Mierzwa-Hersztek M; Rashid M; Kalhoro SA; Memon M; Naheed Z; Ahmed M; Zhang Z
    J Environ Sci (China); 2020 Jan; 87():299-309. PubMed ID: 31791503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil.
    Lu K; Yang X; Gielen G; Bolan N; Ok YS; Niazi NK; Xu S; Yuan G; Chen X; Zhang X; Liu D; Song Z; Liu X; Wang H
    J Environ Manage; 2017 Jan; 186(Pt 2):285-292. PubMed ID: 27264699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Heavy Metal Contamination of Soils and Crops near a Zinc Smelter].
    Chen F; Dong ZQ; Wang CC; Wei XH; Hu Y; Zhang LJ
    Huan Jing Ke Xue; 2017 Oct; 38(10):4360-4369. PubMed ID: 29965222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Field experiment on the effects of sepiolite and biochar on the remediation of Cd- and Pb-polluted farmlands around a Pb-Zn mine in Yunnan Province, China.
    Zhan F; Zeng W; Yuan X; Li B; Li T; Zu Y; Jiang M; Li Y
    Environ Sci Pollut Res Int; 2019 Mar; 26(8):7743-7751. PubMed ID: 30671759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-situ physical and chemical remediation of Cd and Pb contaminated mine soils cultivated with Chinese cabbage: A three-year field study.
    Oh SJ; Irshad MK; Kang MW; Roh HS; Jeon Y; Lee SS
    J Hazard Mater; 2023 Oct; 459():132091. PubMed ID: 37515987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined passivators regulate the heavy metal accumulation and antioxidant response of Brassica chinensis grown in multi-metal contaminated soils.
    Li Z; Cao H; Yuan Y; Jiang H; Hu Y; He J; Zhang Y; Tu S
    Environ Sci Pollut Res Int; 2021 Sep; 28(35):49166-49178. PubMed ID: 33932211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of biochar, zeolite and bentonite on physiological and biochemical parameters and lead and zinc uptake by maize (Zea mays L.) plants grown in contaminated soil.
    Afzal S; Alghanem SMS; Alsudays IM; Malik Z; Abbasi GH; Ali A; Noreen S; Ali M; Irfan M; Rizwan M
    J Hazard Mater; 2024 May; 469():133927. PubMed ID: 38447373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of sugarcane bagasse-derived biochar on heavy metal availability and microbial activity: A field study.
    Nie C; Yang X; Niazi NK; Xu X; Wen Y; Rinklebe J; Ok YS; Xu S; Wang H
    Chemosphere; 2018 Jun; 200():274-282. PubMed ID: 29494908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of a silicon-iron amendment from acid-extracted copper tailings for remediating multi-metal-contaminated soils.
    Mu J; Hu Z; Huang L; Xie Z; Holm PE
    Environ Pollut; 2020 Feb; 257():113565. PubMed ID: 31733972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioavailability and Speciation of Heavy Metals in Polluted Soil as Alleviated by Different Types of Biochars.
    Xu W; Hou S; Li Y; Khan MA; Luo W; Chen Z; Li Y; Wu X; Ye Z; Liu D
    Bull Environ Contam Toxicol; 2020 Apr; 104(4):484-488. PubMed ID: 32100059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of dialdehyde starch derivatives in the phytoremediation of soils contaminated with heavy metals.
    Antonkiewicz J; Para A
    Int J Phytoremediation; 2016; 18(3):245-50. PubMed ID: 26280197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of the phytoremediation efficiency of Ricinus communis L. and methane uptake from cadmium and nickel-contaminated soil using spent mushroom substrate.
    Sun Y; Wen C; Liang X; He C
    Environ Sci Pollut Res Int; 2018 Nov; 25(32):32603-32616. PubMed ID: 30242654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental materials for remediation of soils contaminated with lead and cadmium using maize (Zea mays L.) growth as a bioindicator.
    Shi Y; Huang Z; Liu X; Imran S; Peng L; Dai R; Deng Y
    Environ Sci Pollut Res Int; 2016 Apr; 23(7):6168-78. PubMed ID: 26604199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Phytoavailability and chemical speciation of cadmium in different Cd-contaminated soils with crop root return].
    Zhang J; Yu LL; Xin SZ; Su DC
    Huan Jing Ke Xue; 2013 Feb; 34(2):685-91. PubMed ID: 23668141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Enhanced phytoextraction of heavy metal contaminated soil by chelating agents and auxin indole-3-acetic acid].
    Zhou JM; Dang Z; Chen NC; Xu SG; Xie ZY
    Huan Jing Ke Xue; 2007 Sep; 28(9):2085-8. PubMed ID: 17990562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.