These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. The toxicity of superparamagnetic iron oxide nanoparticles induced on the testicular cells: In vitro study. Dantas GPF; Ferraz FS; Coimbra JLP; Paniago RM; Dantas MSS; Lacerda SMSN; Procópio MS; Gonçalves MF; Furtado MH; Mendes BP; López JL; Krohling AC; Martins EMN; Andrade LM; Ladeira LO; Andrade ÂL; Costa GMJ NanoImpact; 2024 Jul; 35():100517. PubMed ID: 38848992 [TBL] [Abstract][Full Text] [Related]
4. Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Gupta AK; Gupta M Biomaterials; 2005 May; 26(13):1565-73. PubMed ID: 15522758 [TBL] [Abstract][Full Text] [Related]
5. Increased cellular uptake of biocompatible superparamagnetic iron oxide nanoparticles into malignant cells by an external magnetic field. Prijic S; Scancar J; Romih R; Cemazar M; Bregar VB; Znidarsic A; Sersa G J Membr Biol; 2010 Jul; 236(1):167-79. PubMed ID: 20602230 [TBL] [Abstract][Full Text] [Related]
6. Biocompatible superparamagnetic core-shell nanoparticles for potential use in hyperthermia-enabled drug release and as an enhanced contrast agent. Patil-Sen Y; Torino E; De Sarno F; Ponsiglione AM; Chhabria V; Ahmed W; Mercer T Nanotechnology; 2020 Sep; 31(37):375102. PubMed ID: 32392545 [TBL] [Abstract][Full Text] [Related]
7. Dynamic magnetic fields remote-control apoptosis via nanoparticle rotation. Zhang E; Kircher MF; Koch M; Eliasson L; Goldberg SN; Renström E ACS Nano; 2014 Apr; 8(4):3192-201. PubMed ID: 24597847 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and Characterization of Citrate-Stabilized Gold-Coated Superparamagnetic Iron Oxide Nanoparticles for Biomedical Applications. Stein R; Friedrich B; Mühlberger M; Cebulla N; Schreiber E; Tietze R; Cicha I; Alexiou C; Dutz S; Boccaccini AR; Unterweger H Molecules; 2020 Sep; 25(19):. PubMed ID: 32993144 [TBL] [Abstract][Full Text] [Related]
10. Selection of potential iron oxide nanoparticles for breast cancer treatment based on in vitro cytotoxicity and cellular uptake. Poller JM; Zaloga J; Schreiber E; Unterweger H; Janko C; Radon P; Eberbeck D; Trahms L; Alexiou C; Friedrich RP Int J Nanomedicine; 2017; 12():3207-3220. PubMed ID: 28458541 [TBL] [Abstract][Full Text] [Related]
11. Bioevaluation of superparamagnetic iron oxide nanoparticles (SPIONs) functionalized with dihexadecyl phosphate (DHP). Mieloch AA; Żurawek M; Giersig M; Rozwadowska N; Rybka JD Sci Rep; 2020 Feb; 10(1):2725. PubMed ID: 32066785 [TBL] [Abstract][Full Text] [Related]
12. Hyaluronic acid conjugated superparamagnetic iron oxide nanoparticle for cancer diagnosis and hyperthermia therapy. Thomas RG; Moon MJ; Lee H; Sasikala AR; Kim CS; Park IK; Jeong YY Carbohydr Polym; 2015 Oct; 131():439-46. PubMed ID: 26256205 [TBL] [Abstract][Full Text] [Related]
13. Impact of superparamagnetic iron oxide nanoparticles on in vitro and in vivo radiosensitisation of cancer cells. Russell E; Dunne V; Russell B; Mohamud H; Ghita M; McMahon SJ; Butterworth KT; Schettino G; McGarry CK; Prise KM Radiat Oncol; 2021 Jun; 16(1):104. PubMed ID: 34118963 [TBL] [Abstract][Full Text] [Related]
14. Differential effect of polyvinylpyrrolidone-coated superparamagnetic iron oxide nanoparticles on BT-474 human breast cancer cell viability. Aliakbari M; Mohammadian E; Esmaeili A; Pahlevanneshan Z Toxicol In Vitro; 2019 Feb; 54():114-122. PubMed ID: 30266435 [TBL] [Abstract][Full Text] [Related]
15. 2-Deoxy-D-Glucose Modified Magnetic Nanoparticles with Dual Functional Properties: Nanothermotherapy and Magnetic Resonance Imaging. Zhao L; Zheng Y; Yan H; Xie W; Sun X; Li N; Tang J J Nanosci Nanotechnol; 2016 Mar; 16(3):2401-7. PubMed ID: 27455648 [TBL] [Abstract][Full Text] [Related]
16. Potential use of superparamagnetic iron oxide nanoparticles for in vitro and in vivo bioimaging of human myoblasts. Wierzbinski KR; Szymanski T; Rozwadowska N; Rybka JD; Zimna A; Zalewski T; Nowicka-Bauer K; Malcher A; Nowaczyk M; Krupinski M; Fiedorowicz M; Bogorodzki P; Grieb P; Giersig M; Kurpisz MK Sci Rep; 2018 Feb; 8(1):3682. PubMed ID: 29487326 [TBL] [Abstract][Full Text] [Related]
17. The internalization pathway, metabolic fate and biological effect of superparamagnetic iron oxide nanoparticles in the macrophage-like RAW264.7 cell. Gu J; Xu H; Han Y; Dai W; Hao W; Wang C; Gu N; Xu H; Cao J Sci China Life Sci; 2011 Sep; 54(9):793-805. PubMed ID: 21922429 [TBL] [Abstract][Full Text] [Related]
18. Surface modification of superparamagnetic iron oxide (SPION) and comparison of cytotoxicity effect of mPEG2000-PEI-SPION and mPEG750-PEI-SPION on the human embryonic carcinoma stem cell, NTERA2 cell line. Sadeghi Z; Maleki P; Shahabi F; Bondarkhilli SAM; Masoumi M; Taheri M; Mohammadi M; Raheb J Hum Antibodies; 2020; 28(2):159-167. PubMed ID: 32116243 [TBL] [Abstract][Full Text] [Related]
19. Accumulation and biological effects of cobalt ferrite nanoparticles in human pancreatic and ovarian cancer cells. Pašukonienė V; Mlynska A; Steponkienė S; Poderys V; Matulionytė M; Karabanovas V; Statkutė U; Purvinienė R; Kraśko JA; Jagminas A; Kurtinaitienė M; Strioga M; Rotomskis R Medicina (Kaunas); 2014; 50(4):237-44. PubMed ID: 25458961 [TBL] [Abstract][Full Text] [Related]
20. Could FA-PG-SPIONs act as a hyperthermia sensitizing agent? An in vitro study. Fakhimikabir H; Tavakoli MB; Zarrabi A; Amouheidari A; Rahgozar S J Therm Biol; 2018 Dec; 78():73-83. PubMed ID: 30509670 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]