These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 32120208)
1. Role of microbial diversity for sustainable pyrite oxidation control in acid and metalliferous drainage prevention. Ogbughalu OT; Vasileiadis S; Schumann RC; Gerson AR; Li J; Smart RSC; Short MD J Hazard Mater; 2020 Jul; 393():122338. PubMed ID: 32120208 [TBL] [Abstract][Full Text] [Related]
2. Efficient Low-pH Iron Removal by a Microbial Iron Oxide Mound Ecosystem at Scalp Level Run. Grettenberger CL; Pearce AR; Bibby KJ; Jones DS; Burgos WD; Macalady JL Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28087535 [TBL] [Abstract][Full Text] [Related]
3. Effect of Phospholipid on Pyrite Oxidation and Microbial Communities under Simulated Acid Mine Drainage (AMD) Conditions. Pierre Louis AM; Yu H; Shumlas SL; Van Aken B; Schoonen MA; Strongin DR Environ Sci Technol; 2015 Jul; 49(13):7701-8. PubMed ID: 26018867 [TBL] [Abstract][Full Text] [Related]
4. [Molecular Research of Acid-Generating Microbial Communities in Abandoned Ores in the Waste Dump of an Iron Mine in Anhui Province]. Du ZR; Hao CB; Pei LX; Wei PF; Zhang Y; Lu YC Huan Jing Ke Xue; 2017 Nov; 38(11):4725-4732. PubMed ID: 29965418 [TBL] [Abstract][Full Text] [Related]
5. Microbial diversity response to geochemical gradient characteristics on AMD from abandoned Dashu pyrite mine in Southwest China. Li B; Wang X; Liu G; Zheng L; Cheng C Environ Sci Pollut Res Int; 2022 Oct; 29(49):74983-74997. PubMed ID: 35648344 [TBL] [Abstract][Full Text] [Related]
6. Passivation of pyrite for reduced rates of acid and metalliferous drainage using readily available mineralogic and organic carbon resources: A laboratory mine waste study. Fan R; Qian G; Short MD; Schumann RC; Brienne S; Smart RSC; Gerson AR Chemosphere; 2021 Dec; 285():131330. PubMed ID: 34246934 [TBL] [Abstract][Full Text] [Related]
7. Novel Microbial Assemblages Dominate Weathered Sulfide-Bearing Rock from Copper-Nickel Deposits in the Duluth Complex, Minnesota, USA. Jones DS; Lapakko KA; Wenz ZJ; Olson MC; Roepke EW; Sadowsky MJ; Novak PJ; Bailey JV Appl Environ Microbiol; 2017 Aug; 83(16):. PubMed ID: 28600313 [TBL] [Abstract][Full Text] [Related]
8. Response of soil-associated microbial communities to intrusion of coal mine-derived acid mine drainage. Brantner JS; Senko JM Environ Sci Technol; 2014; 48(15):8556-63. PubMed ID: 24971467 [TBL] [Abstract][Full Text] [Related]
9. Biosulfides precipitation in weathered tailings amended with food waste-based compost and zeolite. Hwang T; Neculita CM; Han JI J Environ Qual; 2012; 41(6):1857-64. PubMed ID: 23128742 [TBL] [Abstract][Full Text] [Related]
10. The Formation of Silicate-Stabilized Passivating Layers on Pyrite for Reduced Acid Rock Drainage. Fan R; Short MD; Zeng SJ; Qian G; Li J; Schumann RC; Kawashima N; Smart RSC; Gerson AR Environ Sci Technol; 2017 Oct; 51(19):11317-11325. PubMed ID: 28834427 [TBL] [Abstract][Full Text] [Related]
11. Current approaches for mitigating acid mine drainage. Sahoo PK; Kim K; Equeenuddin SM; Powell MA Rev Environ Contam Toxicol; 2013; 226():1-32. PubMed ID: 23625128 [TBL] [Abstract][Full Text] [Related]
12. Silane-based coatings on the pyrite for remediation of acid mine drainage. Diao Z; Shi T; Wang S; Huang X; Zhang T; Tang Y; Zhang X; Qiu R Water Res; 2013 Sep; 47(13):4391-402. PubMed ID: 23764590 [TBL] [Abstract][Full Text] [Related]
13. Utilization of fly ash to improve the quality of the acid mine drainage generated by oxidation of a sulphide-rich mining waste: column experiments. Pérez-López R; Nieto JM; de Almodóvar GR Chemosphere; 2007 Apr; 67(8):1637-46. PubMed ID: 17257643 [TBL] [Abstract][Full Text] [Related]
14. Comparative Analyses of the Microbial Communities Inhabiting Coal Mining Waste Dump and an Adjacent Acid Mine Drainage Creek. Sun W; Xiao E; Krumins V; Dong Y; Li B; Deng J; Wang Q; Xiao T; Liu J Microb Ecol; 2019 Oct; 78(3):651-664. PubMed ID: 30854582 [TBL] [Abstract][Full Text] [Related]
15. Metal mobilization by iron- and sulfur-oxidizing bacteria in a multiple extreme mine tailings in the Atacama Desert, Chile. Korehi H; Blöthe M; Sitnikova MA; Dold B; Schippers A Environ Sci Technol; 2013 Mar; 47(5):2189-96. PubMed ID: 23373853 [TBL] [Abstract][Full Text] [Related]
16. Geochemical investigation of the galvanic effects during oxidation of pyrite and base-metals sulfides. Chopard A; Plante B; Benzaazoua M; Bouzahzah H; Marion P Chemosphere; 2017 Jan; 166():281-291. PubMed ID: 27705822 [TBL] [Abstract][Full Text] [Related]
17. Biogeochemical processes governing natural pyrite oxidation and release of acid metalliferous drainage. Chen YT; Li JT; Chen LX; Hua ZS; Huang LN; Liu J; Xu BB; Liao B; Shu WS Environ Sci Technol; 2014 May; 48(10):5537-45. PubMed ID: 24730689 [TBL] [Abstract][Full Text] [Related]
18. Silicic protective surface films for pyrite oxidation suppression to control acid mine drainage at the source. Wang S; Zhao Y; Li S Environ Sci Pollut Res Int; 2019 Sep; 26(25):25725-25732. PubMed ID: 31267388 [TBL] [Abstract][Full Text] [Related]
19. Soluble microbial products decrease pyrite oxidation by ferric iron at pH < 2. Yacob T; Pandey S; Silverstein J; Rajaram H Environ Sci Technol; 2013 Aug; 47(15):8658-65. PubMed ID: 23777272 [TBL] [Abstract][Full Text] [Related]
20. Diversity of the Sediment Microbial Community in the Aha Watershed (Southwest China) in Response to Acid Mine Drainage Pollution Gradients. Sun W; Xiao T; Sun M; Dong Y; Ning Z; Xiao E; Tang S; Li J Appl Environ Microbiol; 2015 Aug; 81(15):4874-84. PubMed ID: 25979900 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]